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We present a brief review of the application of boundary integral methods in two
dimensions to multicomponent fluid flows and multiphase problems in materials
science. We focus on the recent development and outcomes of methods which accu-
rately and efficiently include surface tension. In fluid flows, we examine the effects
of surface tension on the Kelvin–Helmholtz and Rayleigh–Taylor instabilities in in-
viscid fluids, the generation of capillary waves on the free surface, and problems
in Hele-Shaw flows involving pattern formation through the Saffman–Taylor insta-
bility, pattern selection, and singularity formation. In materials science, we discuss
microstructure evolution in diffusional phase transformations, and the effects of the
competition between surface and elastic energies on microstructure morphology. A
common link between these different physical phenomena is the utility of an analysis
of the appropriate equations of motion at small spatial scales to develop accurate and
efficient time-stepping methods.c© 2001 Academic Press

1. INTRODUCTION

The past 15 years have seen the rapid development of numerical methods, especially in
two dimensions, for applying boundary integral methods to multifluid problems in fluid
dynamics, and more recently to multiphase problems in materials science. By multifluid
or multiphase we mean systems where the constitutive properties of the fluid or material
change abruptly at a dividing interface. The case of immiscible fluids, such as oil and
water, stands as the classical example. An important complicating property of such systems
is surface tension (or surface energy in the materials context). Much recent effort in the
application of boundary integral methods has focused on developing numerical methods
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that efficiently and accurately include surface tension. And while boundary integral methods
are applicable only to a restricted type of flow problem, these problems are central in
fluids and materials science. In fluids, these problems include those producing prototype
patterns, the first nonlinear stages of immiscible fluids mixing, the development of finite-
time singularities, and capillary wave generation in water waves. In materials science, these
problems include morphology selection in phase–transition dynamics and many-precipitate
coarsening, under various types of material anisotropy.

In this paper, we review recent applications of boundary integral methods to simulate
interfacial dynamics of multicomponent fluids and multiphase materials with surface tension
in two dimensions. A boundary integral representation applies when, for example, the
partial differential equations (PDEs) governing the bulk fluid or material are piecewise
homogeneous, and for which a Green’s function can be found or approximated. In such
cases, the dynamics of the system can be reduced to the self-contained, nonlocal dynamics
of the interface separating the homogeneous fluids or phases. In fluid dynamics this typically
means that we are dealing with potential flows (e.g., inviscid and irrotational flows, Hele-
Shaw flows) or Stokes flows. (Except in special cases we neglect the latter, as Stokes flows
are the subject of a separate review in this volume.) Boundary integral methods are not
(immediately) applicable to more general interfacial fluid flows, such as those governed
by the viscous Navier–Stokes equations. In the materials science context, we focus on
diffusional phase transformations whose formulation is closely related to that of Hele-Shaw
flows.

For a few specific problems in these areas, we present a historical perspective and then
discuss what we believe to be the state of the art in numerical simulation. Because of the
limited scope of our review, we refer the reader to more general reviews of interfacial fluid
flows by Hou [85], Hyman [88], Prosperetti and Oguz [145], Romate [158], Sarpkaya [166],
Scardovelli and Zaleski [167], Schwarz and Fenton [170], Stone [180], Tsai and Yue [198],
and Yeung [215]. For diffusional phase transformations in materials science, see the more
general reviews by Johnson and Voorhees [92], Purdy [150], and Voorhees [201, 202].

In addition, it is important to note that there are other, more general, numerical ap-
proaches to simulating free boundary problems in fluids and materials. These include level-
set, volume-of-fluid, immersed boundary, front-tracking, phase-field, and discrete atom
methods. Several of these approaches are the subject of separate reviews in this volume,
and here we focus exclusively on boundary integral methods. When applicable, boundary in-
tegral methods outperform these other methodologies in accurately and efficiently capturing
the dynamics. And so, while being applicable to a core set of problems in fluid dynam-
ics and materials, boundary integral methods provide excellent benchmark simulations for
comparing these different computational strategies.

There are several difficulties in including the effects of surface tension in a simulation.
First, as the pressure jump due to surface tension at an interface is proportional to the in-
terfacial curvature, a high number of spatial derivatives are introduced into the dynamics.
This results in high-order constraints on explicit time-stepping methods. Second, seem-
ingly natural choices of frame in which to compute the interfacial motion can make these
constraints strongly time-dependent, and prohibitive. And third, due to the divergence free
condition on the fluid velocity, these curvature dependent terms enter the dynamics nonlo-
cally and nonlinearly. Such difficulties are not specific to the inclusion of surface tension,
but also arise when dealing with the dynamics of surfaces or curves that have elastic or
other curvature-dependent responses.



304 HOU, LOWENGRUB, AND SHELLEY

Within the context of boundary integral methods for two-dimensional potential and Hele-
Shaw flows, we show in HLS94 [81] how these difficulties arising from surface tension can
be subverted, and efficient and accurate numerical methods constructed. This relies in
part on the “small-scale decomposition” (SSD), a mathematical analysis which identifies
the source of stiffness by examining the equations of motion at small length-scales. The
SSD analysis shows that when the equations of motion are properly formulated, surface
tension acts through a linear operator at small length-scales. This contribution can then be
treated implicitly and efficiently in a time-integration scheme, and the high-order constraints
removed. The consequent improvements in efficiency and results can be dramatic. For
example, in HLS94 we simulated the very long-time development of densely branched
patterns in radial Hele-Shaw flow, and suggested the formation of “topological singularities”
in the Kelvin–Helmholtz problem with surface tension. This latter study was continued in
HLS97 [82], where we developed nonuniform grid methods, used high-order time-stepping,
and quantified many aspects of this singularity through careful numerical simulation. Here
we will review many other related efforts and works.

These analytical approaches might point the way to the development of similar meth-
ods in more complicated situations. For example, simulations of heart function using the
immersed boundary method are currently constrained in time-step by the stiffness induced
by “fiber” elasticity, which is a curvature-dependent boundary force (C. Peskin, private
communication). In this situation, one must also consider the rotational and viscous aspects
of the fluid flow, set in a very complicated geometry.

In Section 2, we discuss the application of boundary integral methods to inviscid and
incompressible multifluid flows with surface tension. The prototype problem is the non-
linear development of the Kelvin–Helmholtz problem under surface tension. We discuss
extensions to the Rayleigh–Taylor instability and water waves. In Section 3, we discuss
the application of boundary integral methods to Hele-Shaw flows, to the study of pattern
formation and morphology selection, and singularity formation. In Section 4, we discuss the
application of boundary integral methods to diffusional phase transitions in materials sci-
ence. Section 5 gives concluding remarks and discusses future directions in the application
of boundary integral methods.

2. INVISCID INTERFACIAL FLUID FLOWS WITH SURFACE TENSION

In this section, we present a brief review of recent applications of boundary integral
methods to study inviscid, incompressible interfacial flows with surface tension in two
dimensions. In particular, we focus on the nonlinear evolution of vortex sheets separating
two immiscible fluids and the dynamic generation of capillary waves on a free surface.

Many physically interesting fluid flows involve the motion of interfaces separating im-
miscible flow components with small viscosity. In flows where there is rapid motion, the
effects of viscosity may be secondary in importance to those of surface tension. This is par-
ticularly evident in shear flows [196]. Moreover, surface tension is central to understanding
fluid dynamic phenomena such as droplet formation and capillary wave motion.

Surface tension at an interface separating two immiscible fluids arises due to an imbalance
of the fluid components’ intermolecular cohesive forces. It is modeled through the Laplace–
Young condition, which relates the pressure jump across an interface to the interfacial
curvature. As mentioned in the Introduction, the accurate simulation of interfaces with
surface tension is a problem of considerable difficulty, and stable, efficient, and accurate
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boundary integral methods have been developed only recently. We review work that is
representative of the current state-of-the-art research in this field.

2.1. Historical Perspective

The use of boundary integral methods in inviscid interfacial flows in two dimensions
has a long and rich history that dates back to the 1932 study of vortex sheet roll-up by
Rosenhead [160]. Much later, Birkhoff [26] developed a boundary integral formulation for
more general interfacial motion. In 1976, Longuet-Higgins and Cokelet [120] developed the
first successful boundary integral method to compute plunging breakers. Since then, many
boundary integral methods have been developed to simulate free-surface Euler flows. See
[5, 11, 13–19, 21, 22, 27, 33, 34, 43, 49, 53, 54, 64, 81, 82, 103–105, 132, 134, 147, 151,
155, 156, 172, 197, 199, 200, 209, 214, 215, 220] for a small sample. For a more complete
set of references, see the review articles listed in the Introduction and the references therein.
While where as it is not our goal to review all of this work here, we point out that the
origins of many modern boundary integral algorithms can be traced to the seminal paper
of Bakeret al. (BMO82) [14]. In that paper, a detailed derivation of the boundary integral
equations is given and the use of iteration methods, to solve the resulting integral equations,
is pioneered. BMO82 then applied the methods to study breaking waves over finite-bottom
topographies and interacting free-surface waves.

The study of interfacial flows with surface tension in two dimensions using boundary
integral methods began with the work of Zalosh [218] in which the nonlinear evolution of a
vortex sheet was considered (density-matched components). Subsequently, other methods
have been developed for flows with different density flow components, by many others
including Baker and Moore [15], Boulton-Stone and Blake [27], Kudela [105], Pullin [149],
Rangel and Sirignano [151], Robinson and Boulton-Stone [156], Rottman and Olfe [161],
Tulin [199], and Yang [214].

All of the boundary integral methods listed exhibit numerical instability that requires
some type of ad-hoc numerical smoothing to yield smooth evolution. The primary diffi-
culty with using smoothing is that it can lead to unphysical results because the effects of
smoothing may dominate those of surface tension. In independent works, Bealeet al. [18,
19, 22] and Baker and Nachbin (BN98) [11] identified certain incompatibilities in the spatial
discretization of the boundary integral equations, both with and without surface tension.
These incompatibilities were shown to lead to numerical instability of the type observed in
previous studies. Bealeet al. and BN98 presented alternative, highly accurate, and stable
methods.

Additional difficulties occur when the equations are discretized in time. The differential
clustering of interface grid points may result in prohibitive time-step restrictions for stability
for explicit time integration methods because of the high-order derivative terms introduced
by surface tension. Because the surface tension appears in the equations nonlocally and
nonlinearly, standard implicit time-stepping methods are very expensive. To overcome these
difficulties, Hou, Lowengrub, and Shelley (HLS94, HLS97) [81, 82] derived an alternate
formulation of the equations which has all the nice properties for time integration schemes
that are associated with having a linear highest order term (such as diffusion term in the
Navier–Stokes equations). For example, the methods given in HLS94 and HLS97 are explicit
in Fourier space and do not have the severe time-step restrictions usually associated with
surface tension. The methods are then used to study the nonlinear, long-time evolution of
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vortex sheets with surface tension, interfaces between fluid components with small density
differences (Boussinesq approximation) and Hele-Shaw interfaces.

Later, Ceniceros and Hou (CH98) [33] proved convergence of a semidiscrete (time-
continuous) version of the methods proposed in HLS94/HLS97 for general two-fluid inter-
facial flows. CH98 also carefully investigated the effects of surface tension on the Rayleigh–
Taylor instability. In addition, Ceniceros and Hou (CH99a) [34] applied the methods of
HLS94/HLS97 to study capillary waves on free surfaces.

Although it is beyond the scope of our review, the use of boundary integral methods in
axisymmetric and 3-D interfacial flows is also a very active research area. See, for example,
[10, 20, 28, 37, 76, 83, 84, 121, 123, 136, 138, 139, 158, 159, 198]. We note that very
recently, Nie [135] has extended the methods of HLS94/HLS97 to study the nonlinear
evolution of axisymmetric vortex sheets with surface tension.

2.2. Boundary Integral Formulation

Consider two inviscid, incompressible, and irrotational fluids separated by the para-
metrized planar interface0 given byX(α) = (x(α), y(α)), as shown schematically in Fig. 1.
The lower fluid is denoted 1, and the upper fluid is denoted 2.n̂ andŝare, respectively, the
unit normal and tangent vectors to0, whereasκ is its curvature. For simplicity, the density
is assumed to be constant on each side of0. Here, the velocity on either side of0 is evolved
by the incompressible Euler equations

u j t + (u j · ∇)u j = − 1

ρ j
∇(pj + ρ j gy), ∇ · u j = 0, (1)

where the subscriptj denotes the upper or lower fluid. There are the boundary conditions

(i) [u]0 · n̂ = 0, the kinematic boundary condition; (2)

(ii) [ p]0 = τκ, the dynamic boundary condition; and (3)

(iii ) u j (x, y)→ (±V∞, 0) asy→±∞, the far−field boundary condition. (4)

Here, [·] denotes the jump taken from above to below0. The tangential component of
fluid velocity is typically discontinuous at0. Such an interface is called avortex sheet(see
[164]). The velocity at a pointX away from the interface has the integral representation

u(X) = 1

2π

∫
γ (α′)

(X − X(α′))⊥

|X − X(α′)|2 dα′, (5)

FIG. 1. A schematic of an interface0 separating two immiscible fluids.
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whereX⊥ = (−y, x). γ is called the (unnormalized) vortex sheet strength. It gives the
velocity difference across0 by

γ̃ = γ (α)

sα

= −[u]|0 · ŝ, (6)

wheresα =
√

x2
α + y2

α is the arclength metric. The velocity jump ˜γ is called the true vortex
sheet strength. This representation is well known; see [14]. We will consider flows that
are 1-periodic in thex-direction. The average value, ¯γ , of γ over a period inα satisfies
−γ̄ /2= V∞.

While there is a discontinuity in the tangential component of the velocity at0, the normal
component,U (α), is continuous and is given by (5) as

U (α) =W(α) · n̂, (7)

where

W(α) = 1

2π
P.V.

∫
γ (α′)

(X(α)− X(α′))⊥

|X(α)− X(α′)|2 dα′ (8)

and P.V. denotes the principal value integral. This integral is called the Birkhoff–Rott inte-
gral.

Using the representation (5) of the velocity, Euler’s equation at the interface, and the
Laplace–Young condition, the equations of motion for the interface are

Xt = U n̂+ T ŝ (9)

γt − ∂α((T −W · ŝ) γ /sα) = −2Aρ

(
sαWt · ŝ+ 1

8
∂α(γ /sα)2− (T −W · ŝ) Wα · ŝ/sα

)
−Fr−1yα +We−1κα. (10)

Here, the equations have been nondimensionalized on a periodicity lengthλ and the velocity
scale ¯γ , and

Aρ = 1ρ

2ρ̄
is the Atwood ratio, (11)

Fr = ρ̄ γ̄ 2λ2

g(1ρ)λ3
is the Froude number, and (12)

We= ρ̄λ2γ̄ 2

τλ
is the Weber number, (13)

where1ρ = ρ1− ρ2, and ¯ρ = (ρ1+ ρ2)/2. The Froude number measures the importance
of inertial forces relative to gravitational forces, whereas the Weber number measures the
importance of inertial forces relative to the dispersive forces of surface tension forces.

T is an (as yet) arbitrary tangential velocity that specifies the motion of the parametrization
of 0. The so-calledLagrangian formulationcorresponds to choosing the tangential velocity
of a point on the interface to be the arithmetic average of the tangential components of the
fluid velocity on either side. That is, choosingT =W · ŝ, in which case Eq. (10) simplifies
considerably.
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Equation (10) is a Fredholm integral of the second kind forγt due to the presence ofγt in
Wt . This equation has a unique solution, and is contractive [14]. The mean ofγ is preserved
by Eq. (10) and must be chosen to be−2V∞, initially, to guarantee that condition (iii ) is
satisfied. Further, whileγ is evolved as an independent variable, it cannot be interpreted
independently of the parametrization. From Eq. (6), it is the ratio ˜γ = γ /sα that has a
physical interpretation, andsα is determined by the choice ofT .

Equation (9–10) realize different physical situations in different limits of the nondimen-
sional parameters. For example, takingAρ = −1 gives the classical Rayleigh–Taylor prob-
lem regularized by surface tension. TakingAρ = +1 gives water waves with surface tension.
Taking Aρ = Fr−1 = 0 gives the Kelvin–Helmholtz problem of two density-matched, im-
miscible liquids. All of these problems will be considered in the following sections.

2.3. The Sources of Stiffness and the Small-Scale Decomposition

For the Kelvin–Helmholtz problem, a natural choice of frame is the so-called
“Lagrangian” frame in whichT =W · s. That is, the interface moves with the average
of the velocities on each side. The problem is then completely characterized by the Weber
numberWe, and the Lagrangian formulation of the equations of motion becomes simply

Xt (α, t) = W(α, t) and (14)

γt (α, t) = We−1κα. (15)

It is this compact formulation that has been used in various studies of singularity formation
in the dynamics of vortex sheets without surface tension (see, for example [42, 104, 128,
131, 172]). Without surface tension, the curvature of the sheet diverges at a finite time and is
coupled to a concentration of interfacial vorticity. This is known as the “Moore” singularity
after Moore [131].

Next, we demonstrate that the Lagrangian formulation results leads to extreme differ-
ential clustering of computational points during typical simulations. This results in severe
numerical time step constraints when surface tension is present. This may be seen through a
general linear analysis given by Bealeet al.[18, 19]. Linearizing around the time-dependent
inertial vortex sheet0 = (x(α, t), y(α, t)) with strengthγ (α, t), Bealeet al.find the leading
order equation for thenormal componentof a perturbation at large wavenumber:

ηt t = − γ 2

4s4
α

ηαα + We−1

2s3
α

H [ηααα] . (16)

Here,H is the Hilbert transform:

H[ f ](α) = 1

π
P.V.

∫ +∞
−∞

f (α′)
α − α′

dα′.

Setting We−1= 0 gives the linearly ill-posed behavior of the unregularized Kelvin–
Helmholtz problem. For finiteWe, this ill-posedness is regularized by a dispersion due
to caused by surface tension.

A “frozen coefficient” analysis of Eq. (16) reveals that the least restrictive time-dependent
stability constraint on a stableexplicit time integration method is

1t < C We1/2 · (s̄αh)3/2 , wheres̄α = min
α

sα; (17)
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FIG. 2. The evolution of log10 (s̄α) for several Weber numbers.

see [18, 19] for details. Hereh = 1/N is the grid spacing, withN the number of points
describing0. Since arclength spacing,1s, satisfies1s≈ sαh, Eq. (17) implies that the
stability constraint is in fact determined by theminimumspacing inarclengthbetween
adjacent points on the grid.

For several “typical” simulations (same initial data, differing Weber numbers),the evo-
lution of s̄α associated with the Lagrangian formulation is shown in Fig. 2, on a base-10
logarithmic scale. Over the times shown,s̄α decreases in value by a factor of 104 or more.
Consequently, the time-step constraint (17) decreases by at least a factor of 106, even for a
fixed grid sizeh. The steep drop at slightly less thant = 0.5 is the result of the compression
associated with the shadow of the Moore singularity, which occurs attM ≈ 0.37 for this
initial data [104]. Such strongly time-dependent time-step constraints have severely limited
previous numerical investigations [11, 149, 151].

Once a stable spatial discretization has been obtained, the primary challenge to computing
the long time evolution of interfacial flows with surface tension lies in the construction of
time integration methods with good stability properties. It is difficult to straightforwardly
construct efficient implicit time integration methods as the source of the stiffness, theκα in
theγ -equation, involves both a nonlinear combination of high derivatives of the interface
position and contributes nonlocally to the motion through theγ in the Birkhoff–Rott integral.
The approach we consider to be state-of-the-art in generating such time integration methods
was first given in HLS94. It involves reformulating the equations of motion according to the
following three steps:(A) θ − sα formulation;(B) small-scale analysis;(C) special choices
of reference frames (tangential velocities).

(A) θ − sα formulation. Rather than usingx, y as the dynamical variables, repose the
evolution in variables that are more naturally related to curvature. Motivated by the identity
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θs = κ, whereθ is the tangent angle to the curve0, the evolution is formulated withθ and
sα as the independent dynamical variables. The equations of motion are then given by

sαt = Tα − θαU (18)

θt = 1

sα

Uα + T

sα

θα. (19)

γt = We−1∂α(θα/sα)+ ∂α((T −W · ŝ) γ /sα). (20)

Givensα andθ , the position(x(α, t), y(α, t)) is reconstructed up to a translation by direct
integration of

(xα, yα) = sα(cos(θ(α, t)), sin(θ(α, t))), (21)

which defines the tangent angle. The integration constant is supplied by evolving the position
at one pointX0(t).

(B) Small-scale analysis.Reformulate the equations by explicitly separating the domi-
nant terms at small spatial scales. The behavior of the equations at small scales is important
because stability constraints (i.e., stiffness) arise from the influence of high-order termsat
small spatial scales. In HLS94, it is shown that at small scales the Birkhoff–Rott operator
simplifies enormously. A useful notation,f ∼ g, is introduced to mean that the difference
betweenf andg is smoother thanf andg. In HLS94, it is demonstrated that

U (α, t) ∼ 1

2sα

H[γ ](α, t). (22)

That is, at small spatial scales, the normal (physical) velocity is essentially the Hilbert
transform with a variable coefficient. Now, Eq. (22) allows a rewriting of the equations of
motion in a way that separates the dominant terms at small scales. We remark that these
terms determine the stability constraints. Rewriting the equations, we obtain

θt = 1

2

1

sα

(
1

sα

H [γ ]

)
α

+ P, (23)

γt = We−1

(
θα

sα

)
α

+ Q. (24)

Here,P andQ represent “lower-order” terms at small spatial scales. This is thesmall-
scale decomposition. Assuming thatsα is given, the dominant small-scale terms are linear
in θ andγ , but also nonlocal and variable coefficient. At this point, it is possible to apply
standard implicit time integration techniques where the leading order “linear” terms are
discretized implicitly. However, we have not yet taken any advantage in choosing the tan-
gential velocityT . There are choices ofT that are especially convenient in constructing
efficient time integration methods and in maintaining the accuracy of the simulations.

(C) Special choices for T .Choose the tangential velocityT to preserve dynamically a
specific parametrization, up to a time-dependent scaling. In particular, require that

sα(α, t) = R(α)L(t) with
∫ 1

0
R(α) dα = 1, (25)
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whereR(α) is a given smooth and positive function. The lengthL(t) evolves by

L̇(t) = −
∫ 1

0
θα′U dα′. (26)

If the constraint (25) is satisfied att = 0, then it is also satisfied dynamically in time by
choosingT as

T(α, t) = T(0, t)+
∫ α

0
θα′U dα′ −

∫ α

0
R(α′) dα′ ·

∫ 1

0
θα′U dα′, (27)

where the integration constantT(0, t) is typically set to zero. This follows directly from
Eqs. (18) and (26).

In HLS94/HLS97 different choices are used forR, and so forT . That which is computa-
tionally most convenient isR≡ 1, yielding what is referred to as the uniform parametriza-
tion frame because a uniform discretization inα is then uniform ins, i.e.,s(α, t) = αL(t).
In the uniform case, the leading-order terms of the small-scale decomposition, Eqs. (23)
and (24), are constant coefficient in space, and implicit treatments in time of these terms
are directly inverted by the Fourier transform.

Since the uniform parametrization frame keeps computational points equally spaced in
arclength everywhere along the curve, this frame can be deficient in capturing structures
such as the blow-up in curvature that apparently occurs in the topological singularity.
From Eq. (25), ifR < 1 in such a region, then there is a greater relative concentration of
grid points there. Accordingly, in HLS97 [82], a nontrivial mappingR is used to cluster
computational points in regions of the curve where local refinement is needed. This yields
the variable parametrization frame. The regions where local refinement is necessary are
identified beforehand by examination of simulations using the uniform parametrization.
The specific choice ofR is given in Appendix A in HLS97. An additional class of reference
frames is also given in Appendix 2 of HLS94.

For a nontrivialR, the leading order terms in the PDEs forθ andγ are still linear, but
are variable coefficient in space. Thus, in an implicit method, iterative methods are required
to invert these terms to obtain the solution at the next time step. Because of the additional
expense associated with solving the linear system, the variable parametrization frame is
used in HLS97 only when it is crucial to obtain extra accuracy, such as at late times in
the regions where (topological) singularities occur. As we will see in the next section, the
expense of inverting the linear system, typicallyO(N ln N) per time step, is much less than
the cost associated with an implicit treatment of the full system, which isO(N2) per time
step, due to the cost associated with evaluating the Birkhoff–Rott integral.

The use of the uniform or variable parametrization frames alone, without theθ–sα refor-
mulation and an implicit treatment of the equations of motion, does in fact preventsα from
becoming small, assα now scales with the overall length of0. This removes the strong
time dependency in time-step restriction (17). However, the 3/2 order constraint relating
the time-step to the spatial grid size still remains. By using theθ − sα reformulation and
the implicit treatment of the leading order terms, this higher-order constraint is removed as
well, typically leaving only a first-order Courant–Friedrichs–Lewy (CFL) type constraint
from advection terms, appearing in both theθ andγ equations, that are hidden inP andQ.

Comment. The use of intrinisic coordinates to compute or simplify the dynamics of
interfaces driven by their geometry has a long history. Examples include Whitham in his
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early work on shock propagation [212]; Broweret al. in work on geometrical models of
interface evolution [29]. Strain in work on unstable solidification [181]; Schwendeman in
work on thermally driven motion of grain domain boundaries in crystallized solids [171];
Goldsteinet al. in work on the elastic, overdamped dynamics of polymers [65, 71]; Hou
et al. in work on the inertial dynamics of filaments [80]; and Shelley and Ueda [175, 176]
in work on dynamics arising in phase transitions of smectic-A materials.

(D) Extension to the general two-fluid case.When the interface0 separates two fluids
with different densities, the Atwood ratioAρ is non-zero. This means that a Fredholm
integral equation of the second kind must be solved to obtainγt due to theWt term in
Eq. (10). It turns out, however, that the small scale decomposition (23), (24) remains valid.
This may be seen explicitly by rewriting Eq. (10) as

γt (α, t)+ K [γt ](α, t) = f (α, t), (28)

whereK is the integral operator

K [γt ](α, t) = −2Aρ

∫
γt (α

′, t)

[
xα(y(α, t)− y(α′, t))− yα(x(α, t)− x(α′, t))

|x(α, t)− x(α′, t)|2
]

dα′.

(29)

Observe that the kernel has a removable singularity atα = α′. Thus,K is smoothing
at small spatial scales [81]. Further,f (α, t) in Eq. (28) contains all the terms in Eq. (10),
which do not containγt . Note that of these terms,κα is still dominant at small spatial scales.
Since the integral operatorI + K is invertible for|Aρ | ≤ 1 [96], we may write the solution
as

γt = f − K [(I + K )−1 f ]. (30)

Finally, sinceK is smoothing at small scales,γt ∼ f ∼ κα. This justifies the assertion
above. For additional details, refer to Appendix 1 of HLS94.

2.4. Temporal and Spatial Discretizations

Let us begin with the temporal discretizations described in HLS94/HLS97. The ODE
(26) for L(t) is not stiff. Therefore it may be solved using an explicit method. For example,
using the second-order Adams–Bashforth method,

Ln+1 = Ln + 1t

2

∫ 1

0

(
3θn

α′U
n − θn−1

α′ Un−1
)

dα′. (31)

ConsequentlyL is always available at the(n+ 1)st time-step. In HLS97, a fourth-order
method is also used to solve this ODE.

Next, consider the second-order Crank–Nicholson time discretization of Eqs. (23) and
(24) in the uniform parametrization frame. The equations are discretized in Fourier space.
Let θ̂n(k) denote the Fourier transform ofθ at wavenumberk and at timetn = n1t . Let
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γ̂ n(k) denote the analogous quantity. Then

θ̂n+1(k)− θ̂n−1(k)

21t
= |k|

4

[(
2π

Ln+1

)2

γ̂ n+1+
(

2π

Ln−1

)2

γ̂ n−1

]
+ P̂n(k) (32)

γ̂ n+1(k)− γ̂ n−1(k)

21t
= − k2

2We

[
2π

Ln+1
θ̂n+1+ 2π

Ln−1
θ̂n−1

]
+ Q̂n(k), (33)

where we have used that̂H = −i sgn(k). The updateŝθn+1 and γ̂ n+1 can then be found
explicitly by inverting a 2× 2 matrix. For details, see HLS94.

In HLS97, a 4th-order accurate, implicit, multistep method due to Ascheret al. [8] is
also used to discretize in time both the uniform and variable parametrization formulations.
Using this method, Eqs. (23) and (24) may be reduced to the following single equation for
θn+1,

sn+1
α θn+1(α)− 1

2We

(
12

25

)2

1t2

(
1

sn+1
α

H
[
θn+1

sn+1
α

]
α

)
α

= N(α), (34)

whereN(α) is a known quantity that depends on the solutions at the previous time steps. In
the uniform parametrization case,θn+1 is obtained explicitly by solving Eq. (34) in Fourier
space since there the equation is diagonal. In the variable parametrization case, the discrete
system is symmetric positive definite and is solved in physical space using the precon-
ditioned conjugate gradient method. The application ofH is performed in Fourier space,
however, so that each step of the iteration requiresO(N ln N) operations. The precondi-
tioning operatorM is given by

M(θn+1) = smaxθ
n+1− 1

2sminWe

(
12

25

)2

1t2H
[
θn+1
α

]
αα

, (35)

wheresmin = minα sn+1
α andsmax= maxα sn+1

α . Thus,M is constant coefficient and is di-
agonalized by the Fourier transform. For details, we refer the reader to Appendix B of
HLS97.

In HLS94 and HLS97, spectrally accurate spatial discretizations are used in both the
uniform and variable parametrization frames. Any differentiation, partial integration, or
Hilbert transform is found at the mesh points by using the discrete Fourier transform. A
spectrally accurate alternate-point discretization [172, 178] is used to compute the velocity
of the interface from Eq. (8), i.e.,

ui = h

π

∑
(i− j ) odd

γ j
(X i − X j )

⊥

|X i − X j |2 , (36)

whereui = u(αi ) andαi = ih. The other variables in Eq. (36) are defined analogously.
Finally, as noted in HLS94, time-stepping methods for vortex sheets suffer from aliasing
instabilities since they are not naturally damping at the highest modes. The instability is
controlled by using Fourier filtering to damp the highest modes and Krasny filtering [104]
to remove round-off error effects; this determines the overall accuracy of the method, and
gives a formal accuracy ofO(h16). An infinite-order filter could also have been used.
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Empirically, it is found that the time stepping routines discussed above remove the high
order time step constraints due to surface tension and suffer only from a first order CFL time
step restriction. In fact, the stability and convergence of these boundary integral methods has
only recently been proved in the semidiscrete case in which time is continuous. For example,
Bealeet al.(BHL96) [19] proved convergence of a class of boundary integral methods, using
a slightly different formulation (based on the velocity potential and Bernoulli’s equation)
than that described previously, in the context of water waves. Ceniceros and Hou (CH98)
[33] later proved convergence of a class of methods analogous to those described in the
case of interfacial flows between two liquids. An important feature of the BHL96 and
CH98 stability analyses is that a certain compatibility between the choice of quadrature
rule for the velocity integral (8) and the choice of spatial derivative must be satisfied on
the discrete level to achieve numerical stability. This compatibility relation is subtle and
ensures that a delicate balance of terms that holds on the continuous level is preserved on
the discrete level. This balance is crucial for maintaining numerical stability and is one of
the reasons why many previous investigations suffered from numerical instability. Using
linear stability analysis near equilibrium interfaces, BN98 [11] independently also noted
and removed instability due to the incompatibility of the operators.

While the BN98 results, and the spectrally accurate method described, satisfy the compat-
ibility relation, most straightforward implementations of the boundary integral equations
do not. The compatibility condition is described most easily in the case of water waves
without surface tension. In this case, the compatibility relation boils down to satisfying

3h( f ) j = Hh Dh( f ) j , (37)

for all discrete functionsf j , where3h is the discretization of

1

π

∫
f (α)− f (α′)
(α − α′)2

dα′,

which is related to the first variation of the velocity integral (8).Hh is the discretization
of the Hilbert transform using the same quadrature method as used for3h. Dh is the
discrete derivative operator. Using alternate point quadrature to evaluate the velocity, the
only compatible spatial discretization isSh, the spectral derivative with theN/2 mode set
to zero. However, one may introduce appropriate Fourier filtering in the approximation of
the velocity integral so that a version of Eq. (37) holds for all choices ofDh. Doing this
appropriately, one obtains

3h( f ρ) j = Hh Dh( f ) j , (38)

where f̂
ρ
(k) = ρ(kh) f̂ (k) andρ is defined byD̂h = ikρ(kh). In the case of surface tension

and two liquids, additional filtering must be used to maintain compatibility for arbitrary
derivatives; alternate point quadrature and the spectral derivative are always compatible.
We refer the reader to BHL96 and CH98 for further details.

2.5. The Kelvin–Helmholtz Instability, Surface Tension, and Singularities

An interface separating two immiscible fluids is susceptible to the Kelvin–Helmholtz
instability when shear develops across that interface. This is a fundamental instability of
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FIG. 3. Growing fingers of interpenetrating fluid forWe= 16.67 and 20. Three spatial periods are shown at
each time.

fluid mixing, such as that required to produce emulsions. Here, we study this problem in its
simplest form and consider an interface separating two density-matched, inviscid fluids.

Fixing the initial data, the Weber numberWealone controls the dynamics. For very small
We, the flow is dominated by surface tension effects, and linear theory gives no instability,
predicting only oscillation. And indeed, the simulations in HLS97 show only an oscillatory
dynamics well-described by linear theory, even over very long times. The dynamics becomes
successively more interesting as the Weber number is increased, and the flow becomes more
dominated by inertial effects, and hence, the Kelvin–Helmholtz instability. Figure 3 shows
the evolution from single-mode initial data, for two intermediate values ofWeat which
only thek = 1 mode is linearly unstable. The nonlinear outcome of the linear instability
is fascinating: The interface elongates into long spikes and the two fluids interpenetrate.
Our simulations suggest that this process can continue indefinitely, with the interface length
eventually growing at a linear rate, with the finger width thinning exponentially. AsWeis
increased and the number of linearly unstable modes increases, inertial effects become
dominating. Figure 4 shows the simulation of evolution for single-mode data (the same
as above) forWe= 200, for which there are 16 linearly unstable modes. The large-scale
spiral structure resembles what one expects from the development of the Kelvin–Helmholtz
instability, based on the zero-surface tension simulations of Krasny [103] using vortex blobs.

There are two crucial points to make. First, with zero surface tension these initial data
(see [104]) produce a Moore singularity at the center of the sheet approximately at time
t = 0.375. At large, but finiteWethe shadow of this singularity is seen as short-wavelength
dispersive waves erupting from the center of the developing spiral, and propagating out-
wards. Thus, surface tension disperses the Moore singularity in a manner reminscent of the
dispersion of near-shocks in the KdV equation. The second point is that while a Moore-type
singularity is avoided, the roll-up does not proceed smoothly onwards. As the latter stages
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FIG. 4. The long-time evolution from a nearly flat sheet forWe= 200. The bottom right box shows a close-up
of the thinning neck att = 1.4.

of our simulation show, the roll-up appears to be terminated by the collision of interfaces
within the interior of the spiral, that is, the smooth dynamics is punctuated by a collision,
in finite time, of the sheet with itself in the inner turns of the spiral.

As is well known, a collision of material interfaces in a flow implies the divergence of
velocity gradients (see, e.g., HLS97). We refer to this collision as atopological singularity,
since such collisions must precede a reconfiguration of fluid interfaces in a multiphase
flow (as in the pinch-off of a droplet). In HLS97, locally refined grids and high-order time-
stepping are used, together with an SSD formulation, to very carefully isolate this oncoming
topological singularity, and to study its analytical structure. This study reveals the following:
As the spiral forms and disparate sections of the interface come in proximity to one another,
a jet begins to form and intensify, fluxing fluid into the inner core of the spiral. This jet is
associated (i) with the thin neck shown in close-up in Fig. 4f, and (ii ) with the formation
of oppositely signed sheet strengths (or interfacial vorticity) on the opposing sides of this
neck. This creation of oppositely signed sheet strength is a direct consequence of surface
tension as in its absence the sheet strength is conserved in the Lagrangian frame, and our
initial data have sheet strength of a single sign. That the thickness of this neck falls to zero
in a finite time is demonstrated in Fig. 5 (upper), which shows the neck width as a function
of time.

The oncoming singularity bears some signs of self-similarity. Expectations of self-
similarity would suggest that

Neck Width∼ (tp − t)ψ,

wheretp is the singularity time (its estimate is shown as the vertical dashed line in Fig. 5
(upper)), andψ = 2/3 the similarity exponent [95]. We find that the collapse follows this
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FIG. 5. The top figure shows the collapse of the neck width in time. In the bottom figure, the left box shows a
close-up of the upper pinching region of the rolled-up sheet at timest = 1.4135 (dashed) and 1.427 (solid), both
very near to the collapse time. The right box magnifies this close-up by another factor of 10.

Ansatz quite closely. Our simulations suggest that bothγ and the interfacial curvatureκ
are diverging as the collapse time is approached. However, we did not find that the rate of
divergence was well fit by self-similarity (ψ = −1/3 for γ and−2/3 for κ). We did find
strong evidence that the opposing interfaces were forming corners as the critical time was
approached, which is also predicted by expectations of self-similarity. The lower part of
Fig. 5 shows the successive blow-ups of the neck region as the singularity is approached,
making the onset of a corner rather convincing.

Figure 6 shows the evolution of the vortex sheet from more complicated, multimode
initial data. This reveals that dynamics from more general initial data is composed of a
combination of finger structures, as seen in Fig. 3, and spirals and pinches, as seen in
Fig. 4. In HLS97, many more details are found concerning the simulations. These include
numerical resolution studies, and further detail on the nature of the singularity, such as
its behavior in the zero surface tension limit. On the latter, our results suggest that before
the Moore singularity time of zero surface tension flow, surface tension acts as a regular
perturbation.

We have also attempted to abstract from our simulations the basic phenomena underlying
the pinching singularity, which is the collapse of a jet between interfaces under surface
tension. Figure 7 shows the direct collapse of a jet, with no intervening roll-up, between
two interfaces under surface tension. The initial data was chosen so that only thek = 1 mode
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FIG. 6. The development of the Kelvin-Helmholtz instability (We= 200) shown over two spatial periods,
for various initial data. (a): The initial data are in thek = 1 and 3 modes, each with a randomly chosen phase.
(b) and (c): The initial data are in the first 30 modes, with randomly chosen initial amplitudes and phases.

was unstable, in crude analogy to the length-scale selection seen in the full simulations.
The collapse of such jets is studied further, analytically and numerically, within long-wave
approximations, by Pugh and Shelley [148].

2.6. The Rayleigh–Taylor Instability and Surface Tension

Another classical hydrodynamic instability is the Rayleigh–Taylor instability (see, e.g.,
[55] for a general reference), which occurs when a layer of heavy fluid sits on top of a lighter
fluid. Such a situation may arise, for example, when a stably stratified multicomponent fluid
system is subjected to a destabilizing temperature gradient (or turned upside down).

Here, we consider again the simplest model: a single interface that separates two inviscid,
immiscible fluids of different densities. In HLS94, the nonlinear evolution of such a dividing

FIG. 7. The collapse of a jet between two interfaces under surface tension. The dashed curves show the initial
position.
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FIG. 8. Unstably stratified flow:A = −0.1 andS= 0.005. Sequence of interface positions.N = 2048 and
1t = 1.25× 10−4. Graph courtesy of Ceniceros and Hou [33].

interface for unstably stratified fluids is simulated using the Boussinesq approximation. In
that approximation, the density variation is taken only in the gravitational term. Its evolution
showed the development of the classical Rayleigh–Taylor plume, with a developing local
Kelvin–Helmholtz spiral. As for the Kelvin–Helmholtz instability discussed in the previous
subsection, it appeared that its evolution was terminated by a collision within the turns of
the spiral (Fig. 18 of HLS94). This problem has since been studied more comprehensively
by Ceniceros and Hou [33] (CH98).

CH98 investigated several examples of two-fluid interfacial flows in the presence of
surface tension. Of particular interest are their high resolution numerical simulations of
evolving, unstably stratified two-fluid interfacial flows, as shown in Fig. 8. This simulation,
We= 200,Aρ = −0.1, andFr−1 = 2.0, was done using an SSD approach with the uniform
parameterization frame. ForAρ > −1 and without surface tension, the interface is known
to develop a curvature singularity due to the Rayleigh–Taylor instability at an early time (a
version of the Moore singularity, see [13]). Surface tension regularizes the Moore singularity
and allows a smooth solution to exist beyond this early singularity time. By timet = 0.9,
two small fingers appear in the interface, and the interface begins to roll up. One can also
see some capillary waves that are generated aroundt = 1.2 and move outwards from the
centers of roll-up. The finger tips broaden as they continue to roll up, and the interface bends
toward the finger tips. This again is very much like the topological singularity formation
seen in the Kelvin–Helmholtz case. As in that case, the minimum distance between the
finger tip and the opposite side of the interface approaches to zero. Although CH98 did not
use a variable parameterization frame for better resolution of the singularity, they found
good agreement with the(tc − t)2/3 asymptotic form of the Neck Width obtained in HLS97.

The study of CH98 seems to indicate that the topological singularity observed in HLS94/
HLS97 for a vortex sheet with surface tension is quite generic. In addition, a recent study
by Tryggvason and Unverdi (TU98) [196] provides further evidence of the genericity. For
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example, TU98 report that interfaces between two immiscible fluids, with small but finite
viscosities, exhibit structures under shear and buoyancy similar to those of their inviscid
counterparts described here and in HLS94, HLS97, and CH98.

2.7. Dynamic Generation of Capillary Waves

A familiar example of interfacial flows which are not driven by a hydrodynamic instability
is the motion of water waves. Water waves are the source of many interesting nonlinear
phenomena such as wave-breaking and the dynamical generation of capillary waves on the
forward wave front [57, 59, 142]. These capillary waves typically appear near the crest
of the main wave where the local curvature is very large and surface tension becomes
important. The understanding of these short waves is important in the remote sensing of sea
surface because the fine structure associated with short wavelengths scatters electromagnetic
radiation. Capillary waves are also believed to be a mechanism for extracting energy from
wind-generated waves and may be significant in wave breaking [57, 59].

There have been many thorough studies of capillary waves generated by steady steep
gravity waves (see, e.g., [44, 118, 119] and the references cited there). For unsteady capillary
waves, Tulin [199] has performed a careful numerical study on the effects of surface tension
on breaking waves. Tulin’s simulations show the appearance of a capillary jump, as defined
by Longuet-Higgins [119], near the wave crest. More detailed structure of capillary waves
has been revealed recently by Ceniceros and Hou (CH99a) [34]. Using the methods of
HLS94/HLS97, they are able not only to compute with high accuracy up to the appearance
of the capillary jump as observed by Tulin, but also to follow the subsequent development
of small-scale structures.

An example of this type of behavior is seen in Figs. 9 and 10. In this simulation,We= 103,
Fr−1 = −20, and an initial shear is imposed to give the wave the impulse to overturn. One

FIG. 9. The approach to breaking for a wave with surface tension. Wave profiles shown at timest = 0, 0.30,
and 0.45, usingN = 2048 and1t = 5× 10−5. Graph courtesy of Ceniceros and Hou [34].
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FIG. 10. (a) A close-up of the interface att = 0.45 and (b) the interfacial curvature plotted against the
Lagrangian parameterα. Graph courtesy of Ceniceros and Hou [34].

can see that the interface becomes vertical att = 0.30 and a capillary wave appears soon
after the wave begins to overturn. Figure 10a gives a close-up of a neighborhood of the crest
at time t = 0.45. The curvature in this region is plotted in Fig. 10b, in which a capillary
wave train can be clearly seen. By a close inspection of the onset of this capillary wave
at t = 0.26, the curvature is seen to develop a spike right behind the wave tip. However,
such a spike is not present in the corresponding zero-surface-tension solution, for which
curvature varies smoothly in the entire region [34]. Soon after, this spike develops into
the capillary wave train. Note also that the capillary intrusion gets narrower in time (see
Fig. 10a), suggesting that a small gas bubble will soon be pinched off and trapped within
the fluid.

A useful quantity to consider is the so-called capillary wavelengthλWe, defined as the
distance between the two largest values of|κ|. Although it is difficult to obtain an accurate
scaling forλWe, the CH99a study suggests that for a fixed time, both the capillary wavelength
and its amplitude decrease nonlinearly asWe−1 decreases to zero. The scaling forλWe is
roughlyO(We−1/2). This seems to be in agreement with the experimental results of Duncan
et al. [57]. Moreover, for these data, CH99a find that the interface profiles with decreasing
surface tensions converge to the zero-surface-tension profile at the fixed timet = 0.45. This
is not surprising since the limiting zero-surface-tension water wave problem is well posed,
even after the wave overturns [213]. Here surface tension acts as a regular perturbation.
However, this conclusion does not apply to the ill-posed Hele-Shaw problem, as we will
see in Section 3.

3. HELE-SHAW FLOWS

Hele-Shaw flow is the quasi-two-dimensional flow of a viscous fluid between two closely
spaced plates—the so-called Hele-Shaw cell [77]. Driven multifluid flows in the Hele-
Shaw cell have been intensely studied, both experimentally and theoretically, because the
nonlinear development of the Saffman–Taylor (S–T) instability [165] can lead to prototype
“densely branched” patterns and is one of a class of pattern-forming systems that includes
crystal growth, electrodeposition, bacterial growth, and directional solidification. A recent
review of the many experimental perturbations of Hele-Shaw flow is given by McCloud
and Maher [124]. Hele-Shaw flows also give a relatively simple and well-characterized
setting in which to study the effects (often subtle) of surface tension on the development of
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singularities, on pattern selection, and as a physical regularization of an ill-posed system.
(Like the Kelvin–Helmholtz system, Hele-Shaw flows can have linear growth rates that scale
linearly with wavenumber.) A much better theoretical understanding of these problems has
followed from analysis, guided or validated by highly accurate and efficient simulations. A
recent review of the role of surface tension in Hele-Shaw flows is given by Tanveer [185]. A
comprehensive bibliography on Hele-Shaw and Stokes flows has been compiled by Gillow
and Howison [63].

The usual starting point for theoretical investigations of Hele-Shaw flows is Darcy’s law.
Consider two incompressible, viscous, and immiscible fluids in a Hele-Shaw cell, separated
by a planar interface0. As before, letj = 1 or 2 label the two fluids. In a Hele-Shaw cell,
the (gap-averaged) velocity of each fluid (j ) is given by Darcy’s law, together with the
incompressibility constraint

u j (x, y) = − b2

12µ j
(∇ pj (x, y)− ρ j F(x, y)), ∇ · u j = 0, (39)

whereb is the cell gap width,µ j the fluid viscosity,ρ j its density, andF = −∇8 is
a body force (usually divergence-free, e.g., gravitational). Boundary conditions typically
used are the kinematic and dynamic boundary conditions as given in Eqs. (2) and (3).
These are augmented by far-field boundary conditions on the velocity or pressure. Taking
the divergence of Eq. (39) shows thatp is harmonic, which is the basis from which most
numerical treatments proceed.

3.1. Historical Perspective

Many different numerical approaches have been applied to simulating Hele-Shaw flows.
These include volume-of-fluid methods (e.g., [100, 210]), boundary element methods (e.g.,
[75]), level set and immersed boundary methods [86], and statistical methods based on
diffusion-limited aggregation (e.g., [7, 116]). Methods based on conformal mapping have
long been used to study dynamics of Hele-Shaw flows (see [23, 45, 185] for reviews and
references). However, conformal mapping methods apply most naturally to singly connected
domains, and can have difficulties with efficiently including the effect of surface tension.
As a numerical method, the most sophisticated version of conformal mapping seems that
due to Bakeret al. [12], who solve a well-posed evolution problem for zero surface tension
by analytically continuing initial data and equations of motion into the complex plane, and
explicitly tracking the solution’s poles and other singularities.

Due to their natural applicability, flexibility, and potential for high accuracy, boundary
integral methods have developed into a powerful method for simulating Hele-Shaw flows.
Their first application to study dynamics seems to be due to Tryggvason and Aref [194,
195], who in a highly ambitious work studied two-fluid mixing via a Rayleigh–Taylor in-
stability and the interaction of S–T fingers. Posing the interfacial velocity in terms of a
vortex sheet, they gave an integral equation of the 2nd kind for its strengthγ , essentially
of the form in Eq. (28) (which is forγt ). The integral equation was solved via iteration
(similarly to [14] for inviscid waves), coupled to a vortex-in-cell (VIC) approach for the
rapid evaluation of the Birkhoff–Rott integral. In studying mixing, they were able to achieve
considerable ramification of the interface, though this was likely aided by the smoothing
of VIC methods. This work was soon followed by Davidson [47, 48] and DeGregoria
and Schwartz [50–52]. Davidson [47] posed a boundary integral representation, and used it
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subsequently [48] to study the development of S–T fingers to modest amplitude. DeGregoria
and Schwartz studied various aspects of tip-splitting and the stability of S–T fingers. Their
boundary integral approach was coupled to a grid redistribution strategy that kept com-
putational points in regions of high curvature, and used a a stiff ODE solver to reduce
the stiffness from surface tension. Meiburg and Homsy [127] employed a vortex sheet de-
scription, with the interface discretized as circular arcs, to study aspects of splitting and
finger instability. Following Daiet al. [45], who used conformal mapping methods, Dai
and Shelley [46] applied boundary integral methods (discretized to infinite order) to study
regularization of Hele-Shaw flows by surface tension, and also the interaction of surface
tension and noise. They partially ameliorated the stiffness of surface tension by choos-
ing a dynamical frame that kept computational points almost uniformly spaced. They also
applied Krasny filtering [104], to control growth of round-off errors in their simulations.
Using a vortex sheet representation, Whitaker [211] compared the effect of different spatial
discretizations on simulating propagating fingers. Power [144] used a boundary integral rep-
resentation to simulate the initial development of the S–T instability for two fluids in a radial
geometry.

3.2. The Small-Scale Decomposition for Hele-Shaw Flows

In HLS94 [81], we developed the SSD for Hele-Shaw flows (described below). This
efficiently subverted the stiffness due to surface tension, and as with inertial vortex sheets,
has allowed the accurate and long-time simulation of many prototypical Hele-Shaw flows.
Further, given the close analogy of Hele-Shaw flow to solidification models in materials
science, much of the numerical technique is immediately applicable there (see next section).

That the velocity field has the form given in Eq. (5) follows from Darcy’s law (39)
(which implies that the velocityu j is irrotational), the incompressibility constraint, and
the kinematic and dynamic boundary conditions. An equation forγ follows from these,
together with the Laplace–Young condition; see [194] or [46] for details. In nondimensional
variables,γ satisfies

γ = −2AµsαW · ŝ+ Sκα + RF · ŝ. (40)

Here,Aµ = (µ1− µ2)/(µ1+ µ2) is the Atwood ratio of the viscosities,S is a nondimen-
sional surface tension, andR is a signed measure of density stratification (ρ1 < ρ2 implies
R < 0). Due to the presence ofγ in the velocityW, Eq. (40) is a Fredholm integral equation
of the second kind forγ , and is, in general, uniquely solvable (see [14]).

For Hele-Shaw flows, the effect of surface tension is dissipative at small scales and gives
a higher order time-step constraint than for inertial flows. Again using a “frozen coefficient”
analysis of the equations of motion, Bealeet al. [21] showed that least restrictive stability
time-step bound on an explicit integration scheme was the time-dependent constraint

1t < C · (s̄αh)3/S, (41)

wheres̄α = minα sα. This is a much stricter constraint than that for the inertial case (Eq. (39)).
Again, the stability constraint is determined by the minimum grid spacing in arclength—
perhaps strongly and adversely time-dependent—but the bound in terms ofs̄α is also quadrat-
ically smaller. The lack of robust and efficient methods for subverting such constraints has
severely limited simulations of Hele-Shaw and related flows.
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For the Hele-Shaw case, in HLS94 the small-scale analysis shows that the equations of
motion can be given in the form

θt = S

2

1

sα

(
1

sα

H
[
θα

sα

]
α

)
α

+ N(α, t), (42)

where, as in Eq. (23), the term dominant at small length-scales is separated out, andN is
the remaining, lower-order, terms.

The majority of simulations of Hele-Shaw flow have usedR≡ 1, which removes the
variable coefficient nature of Eq. (42). Thus, Eq. (42) simplifies to

θt = S

2

(
2π

L

)3

H[θααα] + N(α). (43)

Equation (43) is posed together with Eq. (26), the ODE for evolvingL, and is a complete
specification of the interfacial problem, with the highest order, linear behavior prominently
displayed. This term is now diagonalizable by the Fourier transform, and so

θ̂ t (k) = −S

2

(
2π

L

)3

|k|3θ̂ (k)+ N̂(k). (44)

Implicit time integration methods can now be easily applied. As an example, consider
linear propagator methods, which factor out the leading order linear term prior to dis-
cretization. They usually provide stable, even high-order, methods for integrating diffusive
problems. The first use of such a method (of which the authors are aware) was by Rogallo
[157] in simulations of the Navier–Stokes equations, though it has been rediscovered and
used by several researchers in different contexts. For Hele-Shaw, Eq. (44) is rewritten as

∂

∂t
ψ(k, t) = exp

(
S

2
(2π |k|)3

∫ t

0

dt′

L3(t ′)

)
N̂(k, t), (45)

where

ψ(k, t) = exp

(
S

2
(2π |k|)3

∫ t

0

dt′

L3(t ′)

)
θ̂ (k, t). (46)

Equation (45) follows from Eq. (44) by finding an integrating factor to incorporate the linear
term into the time derivative. It is now Eq. (45) that is discretized using the second-order
Adams–Bashforth method. In terms ofθ̂ , the result is

θ̂n+1(k) = ek(tn, tn+1)θ̂
n(k)+ 1t

2
(3ek(tn, tn+1)N̂n(k)− ek(tn−1, tn+1)N̂n−1(k)), (47)

wheretn = n1t , and

ek(t1, t2) = exp

(
−S

2
(2π |k|)3

∫ t2

t1

dt′

L3(t ′)

)
. (48)

The use of “linear propagator” is now clear;θ̂ at thenth time-step is propagated forward
to the(n+ 1)st time-step at the exact exponential rate associated with the linear term. If
N ≡ 0, this yields theexactsolution to the linear problem. Of course, the factore(t1, t2)
still has a continuous time dependence through the presence of integrals. These integrals
are evaluated by evolving auxiliary ODEs for the integrand, and forL(t). Clearly, linear
propagator methods can be formulated with high-order methods.
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FIG. 11. The evolution of an expanding gas bubble in a Hele-Shaw cell.

3.3. Pattern Formation

Hele-Shaw flows can give rise to the formation of beautiful patterns—this is one aspect
of the physicist’s and mathematician’s interest in them. In this section, we briefly discuss
several scenarios and simulations of pattern formation.

From HLS94, Fig. 11 shows the simulation of a gas bubble expanding outwards into a
Hele-Shaw fluid (see [45, 46]) over long times. From the competition of surface tension
with the fluid pumping, this simulation shows the development of ramification through
successive tip-splitting events—the S–T instability—and the competition between adjacent
fingers. This simulation is also spectrally accurate (infinite order) in space, and uses a second-
order in time linear propagator method to integrate the small-scale decomposition. There
are no high-order time-step constraints. The fluid velocity is evaluated from the discretized
Birkhoff–Rott integral inO(N) operations using the Fast Multipole Method of Greengard
and Rokhlin [74]. The integral equation forγ (arising from the viscosity contrast) is solved
via the iterative linear system solver GMRES, using an SSD-based preconditioner [163, 72].
The operation count isO(N) at each time-step, whereN is the number of points describing
the boundary. HereN = 4096 and1t = 0.001. This time step is 103 times larger than that
used by Dai and Shelley [46] in computations of a similar flow using an explicit method
with a lesser number of points, and the interface here has developed far more structure.

A very different manifestation of the S–T instability and pattern formation is seen in
Fig. 12. This simulation, due to Shelleyet al. (see [174]) and using SSD-based methods,
shows the atypical patterns that can form at the liquid/gas interface that bounds a blob of
viscous fluid, as the upper plate of a Hele-Shaw cell is lifted. This lifting puts the fluid blob
under a lateral straining flow, sucking in the interface and causing it to buckle. This basic
mechanism, though coupled to a much different material rheology, is likely responsible for
producing the permanent patterns left behind after some adhesive tapes are pulled up. The
resulting short-lived patterns can resemble a network of connections with triple junctions.
A likewise odd pattern formation is seen in Fig. 13, from Lowengrub and Shelley (1999,
unpublished), which shows the nonlinear development of the S–T instability on a liquid
bubble in a spinning Hele-Shaw cell (see [32] for related experiments). Here the central
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FIG. 12. The evolution of a contracting fluid blob as the cell gap-width is increased in time. Graph courtesy
of Shelleyet al. [174].

bubble throws out attached droplets of fluid, which then themselves become susceptible to
the S–T instability, throwing out fingers which will perhaps themselves form new droplets.
Such flows are relevant to the manufacturing process of spin coating, where it is of interest
to control such instabilities.

In a set of beautiful simulations that sought to establish a concrete connection between
Hele-Shaw flows and dendritic solidification, Almgrenet al.[4] (ADH) used an SSD formu-
lation to compute the long-time growth of “dendrites” in a Hele-Shaw flow with anisotropic
surface tension. Figure 14 shows a sample simulation from this work. As in the simulation
from HLS94 described above, this shows an expanding gas bubble, but with the pressure

FIG. 13. The centrifugal instability of a liquid bubble in a rotating Hele-Shaw cell. Graph courtesy of
Lowengrub and Shelley (unpublished).
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FIG. 14. Pattern formation in an anisotropic Hele-Shaw cell. Graph courtesy of Almgrenet al. [4].

boundary conditionp = d0(1− ε cosm2)κ, where2 is the azimuthal angle andman inte-
ger (m= 4 in the figure). (In their numerical implementation of the SSD, the “small-scale”
terms use only the mean surface tensiond0, which at large anisotropiesε somewhat reduces
the effectiveness of the method.) Now one sees the suppression of tip-splitting, and the for-
mation of a densely branched pattern, replaced by “dendrites” traveling along directions of
least surface tension, and shedding side-branches. Through their simulations and analysis,
ADH established that the emerging finger displayed a simple temporal scaling, which has
lead to new experimental and theoretical work in solidification and Hele-Shaw flows (see,
e.g., [89, 146]).

Finally, we close this section with the remark that even though the SSD analysis arises
from the boundary integral representation, its application is not bound to it. Figure 15 shows

FIG. 15. Left box: A simulation of the development of the S–I instability for a slightly shear-thinning fluid.
Right box: A closeup of the overset grids used in the simulation, where the body-fitted grid is coupled to the
Cartesian background grid. Graph courtesy of Fast and Shelley [62].
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a simulation by Fast and Shelley [60, 62] of the nonlinear development of the Saffman–
Taylor instability for a weakly “shear-thinning” fluid. A mathematical description of a
Darcy’s law for shear-thinning fluids can be found in [60, 61, 101, 102], but suffice it to
say that now the pressure is not harmonic and has no boundary integral representation. To
advance the interface the pressure must be found in the entire fluid domain at each time-
step. Fast and Shelley apply overset grid methods, based on the Overture framework [30],
where the domain away from the interface is discretized by a fixed grid, and that near the
interface by a narrow conforming grid. This avoids the difficulties of global grid generation,
and minimizes grid anisotropy errors. An SSD formulation is used to control, again, the
stiffness induced by surface tension. This simulation illustrates how shear-thinning leads to
a relative suppression of the tip-splitting that underlies the densely branched morphology
of Newtonian patterns (see also [102, 143] and the references therein).

3.4. Singularity Formation

In this section, we will review several recent applications of boundary integral methods
to study the formation of singularities in Hele-Shaw flows. Singularity formation for Hele-
Shaw flows without surface tension is practically generic. The modification or generation
of singularities by the presence of surface tension is much less well understood. In what
seems to be the first such result, Duchon and Robert [56] proved the short-time existence
of a linearly unstable Hele-Shaw flow with surface tension (for a flow with suction from a
mass sink). A long-time existence result has been obtained by Constantin and Pugh [41] for
the linearly stable case of a near circular blob of fluid (with no suction). Recent simulational
work has considered the formation of topological singularities (i.e., interfacial self-collision)
and the collision of an interface with a mass sink.

3.4.1. Topological Singularities

Topological transitions in fluid systems are poorly understood, and Hele-Shaw flows
provide a simple, but nontrivial, situation in which to study them. The majority of studies
concern analytical and numerical studies of simplified “lubrication,” or long-wave, descrip-
tions of Hele-Shaw flows, which yield nonlinear, but local, PDEs for the layer thickness
(e.g., see [3, 24, 25, 39, 58, 67–70, 173]. Two studies that have sought to study topological
singularities in the full Hele-Shaw problem are Shelleyet al. [173] and Almgren [2]; both
applied boundary integral methods.

Shelleyet al.[173] give an initial study of topological singularity formation in Hele-Shaw
flows, where a thin fluid layer is being driven to rupture by a Rayleigh–Taylor instability.
In this study, they develop a lubrication reduction from a long-wave expansion of the
boundary integral description, and perform simulations that compare the approximate and
full systems (see Goldsteinet al. [67–70] for subsequent analytical and numerical studies
of the associated lubrication PDE). For the full Hele-Shaw flow, Fig. 16 shows a simulation
of the collapse of a thin fluid layer. Rising “spikes” of light fluid are accompanied by falling
spikes of heavy fluid. The latter appears to collide at a finite time with the bottom wall
(which can also be interpreted as collision with an interface rising from below as suggested
in the lower figure). This again is a topological singularity, which necessarily is associated
with a divergence, at the least, of flow velocity gradients. These simulations, and those
of the associated lubrication PDE, suggested a divergence inκs, the interfacial derivative
of curvature, withκ remaining bounded. However, by using an explicit time-integration
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FIG. 16. The collapse of a thin fluid layer, under an unstable density stratification, in the Hele-Shaw cell. The
lower graph shows the “final” interface in a commonx − y scale. Courtesy of Shelleyet al. [66].

scheme these simulations employ only 129 spatial points because of the stiffness from
surface tension. And so, while the spatial accuracy was of infinite order, the resolution
was far short of that necessary to capture reliably the details of the singularity. It was this
simulation that originally motivated the development of the small-scale decomposition.

As said above, Constantin and Pugh [41] have proven the long-time existence of smooth
solutions for the Hele-Shaw flow of a blob of fluid initially close to being circular. They
also show that a circular blob is asymptotically stable, with these solutions relaxing to it.
Almgren [2] has given strong numerical evidence that their result does not hold far from
equilibrium. He considered the evolution of singly connected blobs that initially had a
dumbbell shape, with a thin flat neck of fluid connecting the two halves. His conjecture was
that in the process of the domain seeking to minimize its interfacial length—this is a curve-
shortening dynamics—the neck could collapse in width, forming a flow singularity. Unlike
the problem considered above, this flow is “unforced” as there is no source of instability,
such as a density stratification or mass source, and is driven purely by the surface tension
at the boundary. To study this numerically, Almgren employs an SSD formulation, with a
variable parameterization frame (Eq. (25)) that clusters computational points in the neck
region. Rapid evaluation of the spatial interactions is done via the Fast Multipole Method
[74], with GMRES [163] used to solve the integral equation for the vortex sheet strength. His
simulations appear to confirm his conjecture, with the apparent singularity similar to that
suggested above by the simulations of Shelleyet al., and in agreement with the predictions
of lubrication theory.

3.4.2. Hele-Shaw Flow with Suction

Consider a blob of fluid in a Hele-Shaw cell that contains a point mass sink that removes
fluid at a constant rate. In this case, all of the fluid will be removed within a finite time,
giving an upper bound on the time of existence of the flow. The question is: Does anything
interesting happen beforehand? For example, might the bounding interface collide with the
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mass sink first, giving a singularity? For zero surface tension it has been shown that prior
to the fluid being completely removed, the bounding interface can form cusps, or collide
with itself, or reach the sink, and that only a circular blob with the sink at its center does
not develop singularities [79]. For nonzero surface tension, Howisonet al.have attempted a
perturbation analysis of such a flow, using knowledge of the zero-surface-tension solutions
[87]. Assuming that surface tension is only important where curvature is large, they posit the
existence of a self-similar steady-state solution (where on an inner scale surface tension is
rescaled to be order one). Their analysis predicts that small surface tension could cause the
interface in the neighborhood of the cusp to propagate rapidly as a narrow jet, analogous to
a thin crack. However, the existence of such a self-similar steady-state solution is unknown,
and the effects of very small surface tension past the cusp singularity time remained unclear.
For nonzero surface tension, Tian [192] has shown that a singularity must occur if the mass
sink and center of mass of the fluid domain do not coincide. The form of this singularity is
not identified through his analysis.

Kelly and Hinch [97] studied numerically the effects of surface tension on a Hele-Shaw
flow with suction. Using a boundary integral method ([98]; second order in space and time,
with explicit time-stepping) they showed that the cusp of the zero surface tension solutions
was avoided. However, their simulations are limited by modest spatial resolution (200 grid
points).

Nie and Tian [137] have performed a more resolved numerical study of the interface
dynamics of a Hele-Shaw flow with suction. To reach high spatial resolutions (up to
4096 points) and accuracy, they use a spectrally accurate SSD formulation, with a Crank–
Nicholson time discretization. Beginning with data that for zero surface tension would form
a finite-time cusp (away from the sink), they find that surface tension induces a collision of
the interface with the sink, with the interface forming a corner at the instant of impact. They
also provide a resolution study of their simulations in the neighborhood of the singularity
and suggest that the sink is approached by the interface as a square root in time.

Ceniceroset al. [36] (CHS) have provided a subsequent, yet more comprehensive study,
considering both the asymptotic behavior as surface tension tends to zero, and the effect of
having an external fluid—the so-called Muskat problem. Their numerical approach is also
based on the SSD formulation coupled to 4th-order implicit and stable integration scheme
[8]. Because of the ill-posedness of the zero surface tension limit, they control the spurious
growth of round-off errors using Krasny filtering [104]. They also successively double the
number of points, up to 16,384, whenever the Nyquist frequency begins to rise above the
filter level (usually 10−12).

CHS have found several new and intriguing results. They consider an initially circular
blob of viscous fluid surrounded by inviscid fluid, i.e.,Aµ = 1. Figure 17 shows one such
simulation from CHS, for surface tensionS= 5× 10−5, with the interface initially a circle
with the sink displaced upwards from its center. It shows the formation of the corner
singularity as the interface collides with the sink, in agreement with Nie and Tian [137]. All
of the graphs are at times beyondtc, the time of a cusp singularity for zero surface tension
with this particular data. One can clearly see that the “finger” bulges outwards, developing
a well-defined neck before it forms a wedge. This neck appears at a height close to that of
the zero-surface-tension cusp.

From the simulations of CHS, Fig. 18 illustrates the asymptotic trend of the singularity
structure as surface tension is successively halved fromS= 8× 10−4 to S= 5× 10−5.
Here the different simulations are compared by setting the tip height above the sink at
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FIG. 17. The evolution of the initially circular fluid blob, forS= 5× 10−5, past the “cusp” timetc = 0.2842.
Times shown:t = 0.2880, 0.2900, and 0.29181.N = 16384 and1t = 2× 10−7 for the last stage of the motion.
(cf. Fig. 2 of Nie and Tian [137]). Graph courtesy of Ceniceroset al. [36].

y = 0.01. This figure, and their data analysis of the corner angle, strongly suggests that an
asymptotic corner angle is selected in the limit of zero surface tension.

Other results for this class of singular flows can be found in CHS. For example, the
simulations of CHS suggest that the small surface tension solution converges strongly to
the zero-surface-tension solution before its cusp timetc. But what happens aftert = tc, but

FIG. 18. Comparison of the interface finger for a sequence of surface tensions. From the outer curve inwards,
the fingers correspond to the surface tension valuesS= 8× 10−4, 4× 10−4, 2× 10−4, 1× 10−4, and 5× 10−5.
Each interface is plotted when the tip of the finger reaches the fixed levely = 0.01 atx = 0. N = 16384 and
1t = 2× 10−7. Graph courtesy of Ceniceroset al. [36].
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before the interface reaches the sink? Their simulations suggest that the limiting finger has
a rounded end (it hasn’t yet reached the sink), but with a neck formed by two indented
corners. The beginning of these limiting corners can be seen in Fig. 18. These results seem
at odds with the predictions of the crack model of Howisonet al.[87], and further details of
this comparison are found in CHS [36]. CHS also study the two-phase Hele-Shaw problem
(Aµ < 1), finding that larger viscosity in the exterior fluid prevents the formation of the neck,
leads to the development of thinner fingers, and that the asymptotic wedge angle apparently
decreases towards zero (becoming cusp-like) as the viscosities approach equality (Aµ = 0).

It is natural to ask how the behavior of the interface would be in the corresponding 3-D
Darcy flow. This has been studied recently by Ceniceros and Si [37], who find the situation
very similar to that of 2-D Hele-Shaw flow (surprisingly, the azimuthal component of
surface tension did not appear to play a dominant role, and no “pinching” singularities were
observed).

3.5. Finger Selection and Noise Effects in Hele-Shaw Cells

As illustrated above, morphological instabilities are common to pattern formation prob-
lems. The non-equilibrium growth of crystals and directional solidification are some of
the best known examples. Due to the underlying Mullins–Sekerka instability, the system is
very sensitive to small perturbations and can originate convoluted interfacial patterns. The
generic mechanisms in the formation of these complex patterns are present in the simpler
problem of Hele-Shaw, and a fundamental question is what is the role of surface tension in
the formation of these patterns. It can be surprisingly subtle.

In the absence of surface tension, many exact analytic solutions are known for Hele-Shaw
flows. It is natural to use the knowledge of these exact solutions to perform a perturbation
analysis around these solutions. Intuitively, one might think that so long as the zero surface
tension solution existed and was smooth, the small-surface-tension solution would converge
to it in the limit of zero surface tension. However, this intuition must confront the fact that
the zero surface flows can be ill-posed (or rather, well-posed only for analytic initial data in
the space of appropriate analytic norms), and that small perturbations will generically lead
to singularity.

These considerations lead Dai and Shelley [46] to numerically study whether surface
tension acted as regular perturbation to a smooth, but unstable, zero surface tension flow
(see also [45]). They investigated the influence of precision and its associated round-off
errors—computing in up to 30 digits of precision—and separated those flow structures that
seemed intrinsic to surface tension from those induced through the growth of round-off
errors (see also [4] on the question of side-branching). For their initial data, they concluded
that surface tension was indeed acting as a regular perturbation.

However, the asymptotic theory of Tanveer [184, 185] and Siegelet al.[179] suggests that
small surface tension could be a singular perturbation for certain other initial data, even if
the limiting zero-surface-tension solution were perfectly smooth. The reason is that surface
tension, through the curvature, can introduce a new analytic structure (the so-called daughter
singularity) att = 0+which could subsequently impinge upon the physical domain by a time
finite and independent of the surface tension. That is, for such initial data the limiting solution
after a finite time would not be the zero surface tension solution. If true, this is a profound
result both for the mathematical understanding of surface tension and its effects, and for the
more general study of regularizations of ill-posed systems or systems yielding singularity.
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In their simulational studies, Siegelet al. have given strong evidence supporting these
analytical predictions. In part, these studies were done using a boundary integral method,
with an SSD formulation for the dynamics [81], as well as conformal mapping methods as
in Dai and Shelley [46], to achieve high resolution for the interfacial flow. Unfortunately,
because of the extreme sensitivity of the evolution to round-off errors, Siegelet al. find
it very difficult to compute for very small surface tensions (S < 10−5), even if quadruple
precision (30 digits) is used.

For this class of initial data, Ceniceros and Hou [35] (CH99b) have developed a sophis-
ticated numerical approach to investigate the limiting behavior for small surface tension.
Their method relies on three observations. The first is that noise can be significantly reduced
by a parameterization that yields a compact representation of the solution in Fourier space.
Out of the many choices (Lagrangian, equal-arclength, etc.), it is the conformal mapping
representation that gives the most compact parameterization of the interface. This compact
parameterization was used likewise by Dai and Shelley [46] and by Siegelet al. [179] in
their previous studies. An advantage of using the conformal map formulation [40] is that the
evaluation of the velocity integral can be done via Fast Fourier Transform inO(N log(N))

operations. Further, it allows Krasny filtering [104] to be used very effectively to separate
noise from the physical solution for the majority of high to intermediate modes.

The second observation is that the daughter singularity, born att = 0+, is of amplitude
O(S · t) for small times. Therefore, initially it requires many digits to capture the spectral
property of this complex singularity in the physical domain. To alleviate this difficulty, they
derive a scaled equation wherein the amplitude of the daughter singularity isO(1) and can
then be captured more effectively.

The third observation is that one needs to perform a resolution study in the precision
and filter level, and to compute in very high precision for small surface tension (see also
Dai and Shelley [46], and Shelley [172] for related studies). At small surface tensions, very
high precision arithmeticis used to solve numerically the scaled equation (up to 80 digits,
using the multiprecision package of Bailey [9]). High precision has the additional benefit
of reducing the amplitude of round-off error.

Each of these ingredients is essential to simulating the dynamics accurately at the very
small surface tensions considered in CH99b (four orders of magnitude smaller than those
used by Siegelet al.). Consequently, CH99b have provided much stronger support for
surface tension being a singular perturbation to Hele-Shaw flow. We summarize now the
numerical study of CH99b. Following Siegelet al. [179], they choose as initial data an
expanding bubble with three-fold symmetry (see Fig. 11 of [179]), for which the zero-
surface-tension solution forms three cusp singularities attc = 0.3301. According to the
asymptotic theory [179, 184], surface tension should produce anO(1) perturbation from
the zero-surface-tension solution around the much earlier timetd = 0.0463—the daughter
singularity impact time, found by solving an ODE [184]—no matter how small the surface
tension, and even though the zero-surface-tension solution is still smooth att = td.

Figures 19 and 20 show some of the results from their study. ForS= 10−8, Fig. 19
shows the evolution of the interfacial curvature, in the “tip” region (where the cusp would
form for S= 0), at times neartd. Here the effect of the daughter singularity on the physical
domain can be seen. Att = 0.043, the tip curvature flattens in a very localized finite region,
and fromt = 0.046 onwards, the curvature develops growing deviations from the zero-
surface-tension curvature, with the affected physical region near the tip spreading in time.
This behavior is consistent with the asymptotic theory, which implies that the daughter
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FIG. 19. Tip curvature forS= 10−8 at early times neartd = 0.0463. Graph courtesy of Ceniceros and Hou
[35].

singularity cluster will disperse once it gets sufficiently close to the unit disk. Figure 20
shows the interfacial curvature att = 0.048, from the three simulations with surface tensions
S= 10−7, 10−8, and 10−9, as well as for the exact zero surface tension solution. The singular
nature of the zero surface tension limit can now be clearly seen. The positive surface tension
solutions deviate from the the zero-surface-tension solution, with the smaller the surface
tension the larger the deviation.

FIG. 20. Curvature vsα/2π around one tip of the interface att = 0.048 for S= 0, 10−7, 10−8, and 10−9.
N = 8192. Precision level is 60 digits, with Filter level of 10−56. Graph courtesy of Ceniceros and Hou [35].
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FIG. 21. Close-up of the interface att = 0.0502 forS= 10−8. Graph courtesy of Ceniceros and Hou [35].

What is the manifestation of the daughter singularity at times beyondtd? CH99b have
attempted to study this by evolving the interface (forS= 10−8) with accuracy for as long
as possible. The initial evolution is computed in 60-digit arithmetic. Shortly aftert = td,
the precision is switched to double (the Nyquist frequency had approached 10−15), and
the number of points was thereafter doubled whenever the spectrum approached under-
resolution. The simulations shown in Fig. 21 ended withN = 32,768 and1t = 10−7. This
figure shows the interface in the tip region att = 0.0502. While the interface is seemingly
nondescript, its maximum curvature curvature is 10 times its value att = 0.049, and the
“singular region” has continued to spread in time. The small indentations are associated
with these high curvatures, are very hard to resolve, and are a signature of the daughter
singularity.

Given the difficulty of computing over long times with such small surface tensions,
CH99b study for larger surface tensions the impact of daughter singularity on the physical
domain. Figure 22 shows a close-up of the evolution of the interface near one tip for
the two surface tensionsS= 10−4 and S= 10−5. These simulations now use the SSD
formulation withR= 1 (equal-arclength method) [81] (at these larger surface tensions the
time-step constraints for the conformal mapping approach are too severe). The symmetric
indentations arising from the daughter singularity have now led to a bulged bubble that is
spreading outwards. As it spreads, this bubble becomes susceptible to noise-induced tip-
splitting, and a fingering process begins on top of it (see [46]). These simulations suggest
that surface tension sets a length scale for the bubble and finger widths. According to the
asymptotic theory, this length scale is related to the minimum distance from the complex
singularity to the unit disk.

4. BOUNDARY INTEGRAL METHODS IN MICROSTRUCTURE EVOLUTION

In this section, we present a review of recent applications of boundary integral methods to
study microstructure evolution in solid-state diffusional phase transformations in two space
dimensions. Diffusional phase transformations occur when the temperature of a uniform
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FIG. 22. Close-ups of the Hele-Shaw interface at different times forS= 10−4 (t = 0.23–0.50, with a 0.03
time difference between profiles) andS= 10−5 (t = 0.05–0.09, with a 0.01 time difference between profiles).
Computation performed with the equal-arclength method. (cf. Fig. 11 of Siegelet al. [179].) Graph courtesy of
Ceniceros and Hou [35].

mixture of materials is lowered into a regime where the mixture becomes unstable. The
system responds by nucleating second-phase precipitates surrounded by a nearly uniform
matrix. See Fig. 23 for a sketch of a typical model domain.

The precipitates evolve via the long-range diffusion of matter among the distinct crystal
phases until equilibrium is re-established or diffusion is stopped by further lowering of
temperature. Many important structural materials such as steels and nickel and aluminum
alloys are produced in this way. Microstructure, the detailed arrangement of distinct con-
stituents on the microscopic level, is a critical variable that sets the macroscopic stiffness,
strength and toughness of an alloy. Because of the industrial importance of diffusional

FIG. 23. A two-phase domain with three precipitates (p = 3).
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phase transformations, there have been many research studies to model and characterize
the transformation process.

One of the central assumptions of mathematical models of diffusional phase transforma-
tions is that the system evolves so as to decrease the total energy. This energy consists of
an interfacial part, associated with the precipitate/matrix interfaces, and a bulk part due to
the elasticity of the constituent materials. As we will see, simulating the evolution process
involves solving both a harmonic and a biharmonic-like equation for the (quasi-steady)
diffusion and elastic fields respectively. The motion of interfaces is strongly mediated by
surface tension between the different phases. Consequently, many of the ideas and methods
developed in the fluid dynamic context may be applied directly in this materials science
context.

In the absence of the elastic stress, interfacial area is reduced by the diffusion of matter
from regions of high interfacial curvature to regions of low curvature. This results in the
growth of large precipitates at the expense of small ones and is known as Ostwald ripening
(coarsening) [141]. This coarsening process may severely degrade the properties of the
alloy. In the early 1960s, an asymptotic theory was developed by Lifshitz and Slyosov
[117] and Wagner [205] (LSW) to predict the temporal power law of precipitate growth
and a scaling behavior of the distribution of the droplet radius in the long time limit. In
the LSW theory, the average precipitate radius〈R〉∼ t1/3 at long times. The LSW theory
has two major restrictions, however. First, precipitates are assumed to be circular (spherical
in 3-D) and second, the theory is valid only in the zero precipitate volume fraction limit.
Extending the results of LSW to more realistic physical situations has been a subject of
intense research interest. See the reviews by Johnson and Voorhees [92] and Voorhees [201,
202] for a collection of recent references.

In this section, we discuss recent research (using the boundary integral numerical method)
that has been performed to investigate diffusional evolution in systems in which the pre-
cipitate/matrix boundaries are unconstrained, the precipitate volume fraction may be finite
and elastic effects may be considered. Because of space limitations, we will focus on only
a few works which we consider to be representative of state-of-the-art research in this field.

We note that because the bulk elastic energy does not necessarily favor large precipitates
over smaller ones, the coarsening process is affected most significantly by elastic stress. This
is also confirmed experimentally as transitions from spherical to cuboidal to plate-shaped
precipitates, alignment of precipitates along specific crystallographic directions and merging
and splitting of precipitates are all observed [6, 38, 122, 130, 193, 217]. In fact, precipitate
splitting can actually lead to a decrease in average precipitate size over time. Thus, one of
the goals of this line of research is to use elastic stress to control the evolution process so as
to achieve desirable microstructures. Consequently, here we will focus primarily on works
which consider the effect of elasticity on the diffusional evolution.

4.1. Historical Perspective

The numerical study of coarsening using the boundary integral method with arbitrarily
shaped precipitates began with a study of purely quasi-steady diffusional evolution (i.e., no
elastic stress) by McFaddenet al. [126, 203]. Since then, other boundary integral methods
for quasi-steady diffusional evolution, in the absence of elastic stress, have been developed
by Akaiwa and Meiron [1], Imaeda and Kawasaki [90], Yokoyama and Sekerka [216], and
Zhuet al. [219], among others.
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The study of elastic effects in diffusional phase transformations using the boundary in-
tegral method (with arbitrary precipitate shapes) began with the work of Voorheeset al.
(VMJ92) [204], who studied the evolution toward equilibrium of isolated precipitates in a
cubic anisotropichomogeneouselastic medium. That is, the elastic constants of the pre-
cipitate and matrix are identical. More extensive simulations of microstructure evolution in
homogeneous elastic media were later performed by Su and Voorhees [182, 183] and Thorn-
tonet al.(TAV99) [190]. In addition, Thompsonet al.(TSV94) [188] implemented a novel
boundary integral method to calculate equilibrium precipitate shapes and their stability, in
homogeneous media, without resorting to evolution.

The study of elasticinhomogeneityin diffusional phase transformations began with the
work of Jouet al. (JLL97) [93], who studied the evolution of precipitate/matrix systems
in isotropic media. Boundary integral simulations in anisotropic, inhomogeneous elastic
media were first performed by Schmidt and Gross [168] and Schmidtet al. [169]. These
authors studied equilibrium precipitate shapes and their stability using a method analogous
to that used by TSV94 in the homogeneous case (i.e., no time evolution). Later, Leoet al.
(LLN00) [112] developed a boundary integral method to study diffusional evolution in
anisotropic, inhomogeneous media.

Before we turn to a discussion of specific work, we comment that microstructure evolution
in diffusional phase transformations has also been studied using other numerical approaches,
in both two and three dimensions, such as phase-field modeling (e.g., [99, 110, 114, 115,
125, 140, 162, 186, 206–208] among others) and discrete atom methods (e.g., [107–109]).
Further, in 3 space dimensions, there has been very recent research on diffusional evolution
in homogeneous and inhomogeneous elastic media by Thompson and Voorhees [187] and
Mueller and Gross [133], respectively, using boundary integral methods.

4.2. The Model

The model of microstructural evolution we review here consists of diffusionally growing,
arbitrarily shaped precipitatesÄi , wherei = 1, . . . p and p is the total number of precip-
itates, in an elastically stressed matrixÄM . The matrix domainÄM may be finite, infinite
or periodically arranged in the plane with the latter two being the most popular choices.
We will consider infiniteÄM and we refer the reader to [72, 133, 168, 169] for discussions
of the periodic cases. Further, the equations we present are nondimensional and we use the
notation and nondimensionalization of LLN00.

Diffusion of a composition fieldc is assumed to occur in the matrix phase only and is
taken to be quasi-steady:

1c = 0 in ÄM . (49)

The precipitate/matrix interfaces,0i , are assumed to be coherent, and upon which a gener-
alized Gibbs–Thomson boundary condition is given,

c = c0 ≡ (τ + τ ′′)κ + Zgel, on 0i , (50)

whereτ = τ(θ) is the anisotropic surface tension andθ is the angle which the tangent of
the interface makes with thex-axis (appropriate for 2-D). We takeτ + τ ′′ > 0. Further,κ
is the mean curvature (surface energy density),gel is the elasticity energy density which
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is given in Eq. (60). The constantZ is a measure of the relative contribution of the elastic
and surface energies and scales with a characteristic size of the system such as the average
precipitate radius.

The generalized Gibbs–Thomson boundary condition (50) for the composition field is
analogous to the Laplace–Young boundary condition for the pressure field in the fluid
dynamics context. In the solid/solid context, the Gibbs–Thomson boundary condition was
derived by Johnson and Alexander [91], Larch`e and Cahn [106], and Leo and Sekerka [113],
among others (see also [78]). Roughly speaking, this boundary condition reflects the idea
that changing the shape of a precipitate changes both the surface energy and the elastic
energy of the system.

We will also allow a finite mass flux into the system through the far-field condition

−J = lim
R∞→∞

1

2π

∫
0∞
∇c · n ds, (51)

where J is the total mass flux into the system and0∞ is a circular far-field boundary
whose radius isR∞ andn is the outward pointing normal vector. IfJ > 0, the total area
of precipitates increases with time (growth). IfJ = 0, then the total area remains fixed
(equilibration or coarsening).

The normal velocityV of each precipitate–matrix interface0i is computed through a
flux balance at the interface,

V = ∇c · n|0, (52)

wheren is the normal vector pointing intoÄm.
We note that an analogy may be made between the diffusion problem here (withZ = 0)

and the Hele-Shaw problem described in Section 3. In the Hele-Shaw problem, the pressure
p is the harmonic field, and the velocity is proportional to∇ p · n through Darcy’s law.
Consequently, the surface tension enters both systems in exactly the same way. Therefore,
the difficulties associated with tracking interfaces in a Hele-Shaw cell also arise in this
materials science context.

Finally, it remains to determine the elastic energy densitygel. To calculategel, the elastic
fields must be computed at each interface0i . The elastic fields arise because of misfit strains
between the precipitate and matrix phases as well as far-field applied strains. Following the
notation used in [112], misfit is taken into account through the constitutive relations between
the stress6 and the strainE . In each precipitate,

6P = CP(E P − ET ) (53)

whereET denotes the misfit strain, while in the matrix,

6M = CMEM . (54)

In the remainder of this section, we denote the precipitate and matrix phases by the
superscriptsP and M , respectively. Although the precipitates need not have the same
elastic constants, we will make that assumption here for simplicity. In Eqs. (53) and (54),C
denotes the orthotropic stiffness tensor, which using compact notation in two dimensions,
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is given by

Cχ =


cχ

11 cχ
12 0

cχ
12 cχ

22 0

0 0 cχ
66

 , (55)

whereχ = P, M . For the case of acubic materialχ , cχ
11 = cχ

22, while for an isotropic
material,cχ

11 = cχ
22 andcχ

66 = (cχ
22− cχ

11)/2. In compact notation, the stress and strain are
given by

Eχ =


Eχ

11

Eχ
22

2Eχ
12

 and 6χ =


6

χ
11

6
χ
22

6
χ
12

 , (56)

whereEχ
i j = 1

2(uχ
i, j + uχ

j,i ), uχ
i, j = ∂ui /∂xj , anduχ

j are the displacement fields. The quasi-
steady equations for the elastic fields are

6
χ
l j , j = 0 in Äχ=M,P, l = 1, 2, (57)

whereÄP = ∪i Ä
i and the Einstein summation convention is used. We assume that the two-

phase interface0i is coherent, and so the boundary conditions are given by the continuity
of displacement,

u|P = u|M , on 0i , (58)

and traction,

tl |P = 6P
l j n j = 6M

l j n j = tl |M , on 0i , l = 1, 2. (59)

Finally we take conditions

lim
r→∞ E

M = E0, and

uP <∞ in any finite ball around the origin,

whereE0 is an applied far-field strain. Once the elasticity problem is solved,gel is given by

gel = 1

2
6P : (E P − ET )− 1

2
6M : EM +6M : (EM − E P) on0i , (60)

wherea : b ≡ ai j bi j . Last, we note that the diffusion/elasticity system evolves to lower the
sum of the surfaceWs and elasticWel energies:

Wtot = Ws+Wel (61)

Ws =
∫
∪i 0i

τ(θ) ds, and Wel =
∑

χ=M,P

∫
Äχ

6
χ
i j Ẽ

χ
i j d A, (62)
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where

Ẽχ =
{
E P − ET for χ = P,

EM for χ = M.

In the presence of non-zero applied stress,Wel is infinite and an appropriate finite part
must be taken. We refer the reader to [93] for details. A calculation shows that

Ẇtot = d

dt
(Ws+Wel) =

∫
0

(
τκ + Zgel

)
V ds= −

∫
ÄM

|∇c|2 d A. (63)

4.3. Solving the Model

The solution of the diffusional phase transformation system involves three main steps:
(i) the solution of the elasticity system (57)–(60) to determinegel, (ii) the solution of the
diffusion system (49)–(51) to determineV , and (iii) the tracking of the precipitate/matrix
interfaces. In this section, we discuss each of these components separately.

4.3.1. The Diffusion System and Interface Tracking

The solution of the exterior Dirichlet problem is obtained using the very efficient approach
developed by Greenbaumet al.(GGM93) [72]. In this approach, a boundary integral formu-
lation of the problem, originally due to Mikhlin [129], is used. Letµ be a dipole distribution
and introducep source termsA1, . . . , Ap. Then write the compositionc(x) in the matrix
as

c(x) = 1

2π

∫
∪0i

µ(s′)
[

∂

∂n(s′)
log |x− x(s′)| + 1

]
ds′ +

p∑
k=1

Ak log |x− Sk|. (64)

wheren(s′) is the unit normal at the integration pointx(s′), s′ is arclength along0i , andSk

is a point inside0k. Lettingx→ x(s) ∈ 0 j leads to a set of modified 2nd-kind Fredholm
boundary integral equations:

(τ + τ ′′)κ(s)+ Zgel = −µ(s)

2
+
∫
∪0i

µ(s′)
[

∂

∂n(s′)
log |x(s)− x(s′)| + 1

]
ds′

+
p∑

k=1

Ak log |x(s)− Sk|. (65)

To determine theAk, Eq. (65) is appended with

J =
p∑

k=1

Ak, and 0=
∫

0 j

µ(s′) ds′, j = 1, . . . , p− 1. (66)

This system is invertible [129] and the modification to the usual 2nd-kind structure is due to
the sourcesAk. GGM92 developed an efficient preconditioner by considering the reduced
system of Eqs. (65), without the integral operator, and Eq. (64). This reduced linearp× p
system may be solved by Gauss elimination. This can be interpreted [93] as a type of SSD
of the integral equations in the spirit of the SSD described earlier in the fluid dynamics
context. SSD’s for integral equations are discussed in more detail in the following section
where the inhomogeneous elasticity integral equations are presented.
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The implementation used by GGM93 to solve Eqs. (64)–(65) is highly accurate and
efficient. The integrals are discretized with spectral accuracy using the trapezoid rule and
the fast multipole method (FMM) [31, 74] is used to evaluate the discrete sums inO(N)

work. The iterative method GMRES [163] is then used to solve the discrete matrix system.
Thus, the methods of GGM make it possible to solve the exterior diffusion problem for many
more precipitates than was previously computationally affordable. With this improvement,
interface tracking then becomes the limiting computational step in the simulation of pure
diffusional systems.

Using the dipole formulation of GGM93, the normal velocity is given by

Vi (s)= 1

2π

∫
∪0 j

µs′
∂

∂s
log|x(s)−x(s′)| ds′+

p∑
k=1

Ak

(
x1(s)−xs

1k

)
x2,s−

(
x2(s)−xs

2k

)
x1,s(

x1(s)− xs
1k

)2+ (x2(s)− xs
2k

)2 ,

(67)

where the integral is interpreted in the principal value sense. A spectrally accurate dis-
cretization of this integral is obtained using the alternate point trapezoidal rule analogous
to that given in Eq. (36). Because of the third-order time-step constraint due to the surface
tension (e.g., see Eq. (41)), interface tracking remained a problem for these systems until
the recent work of HLS94. Their SSD applies directly to the diffusional system since

V ∼ 1

2
H[(τ + τ ′′)κ],s (68)

at small spatial scales [81, 82, 93, 112], since the surface energy dominates the elastic energy
at these scales. If one writesτ + τ ′′ = 1+ (τ0+ τ ′′0 ), then one can follow the approach
outlined previously for the Hele-Shaw case [81] and rewrite the interface evolution equations
Ẋ = Vn+ Ts using the tangent angleθ and equal arclength tangential velocityT . Note
that the equations are exactly as in the Hele-Shaw case (Eq. 42) except that the definition of
N now includes the anisotropic surface energy. Except for the anisotropic surface energy
contribution, the remainder termsN are lower order at small spatial scales. Although the
surface energy termH[(τ0+ τ ′′0 )θi,αα],α is of the same order as the termH(θi,ααα), it was
found by Almgrenet al.[4] and LLN00 that the splitting in Eq. (42) is effective in removing
the stiffness numerically provided thatτ0+ τ ′′0 is smooth and not too close to 1.

At this point, we can discuss simulations of purely diffusional evolution in the absence of
elastic stress (Z = 0). In metallic alloy systems, this corresponds to simulating systems of
very small precipitates where the surface energy dominates the elastic energy. The current
state of the art in solving the pure diffusional evolution problem is the work of Akaiwa and
Meiron (AM96) [1]. AM96 combined the modified dipole approach of GGM93 together
with the non-stiff time stepping of HLS94 to study the coarsening behavior of large precip-
itate/matrix systems with isotropic surface tension (τ0 = 0). AM96 performed simulations
containing over 5000 precipitates initially. Precipitates are removed if their area decreases
below a certain tolerance. We note that the effect of removing precipitates was analyzed
in [93] (elasticity was also considered). To make such large computations feasible, AM96
also took into account the effectively finite interaction distance of the diffusion field. For
instance, particle–particle diffusional interactions may be neglected with only small relative
errors if the particles are well enough separated [1]. To take advantage of this fact, AM96
divided the computational unit cell into sub-cells each containing 50–150 precipitates. In-
side each sub-cell, the full diffusion field is computed. The influence of particles outside
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FIG. 24. The late stages of diffusional coarsening with no elasticity (Z = 0). Left: moderate time; Right: late
time. Graph courtesy of Akaiwa and Meiron [1]. Reproduced with permission from N. Akaiwa and D. I. Meiron,
Phys. Rev. E54, 1996, R13. Copyright (1996) by the American Physical Society.

each sub-cell is restricted to only involve those lying within a distance of 6–7 times the
average precipitate radius̄R from the sub-cell. This was found to give at most a 1% error
in the diffusion field [1] and significantly reduces the computational cost.

The simulations of AM96 are impressive. For the diffusion systems they considered, the
FMM is over 2,500 times faster than using direct summation [72] and the original method
of MVBM92. Since these integral equations must be solved at each time step, this is an
enormous savings. Further, an additional factor of at least 1000 in speedup is gained by
using the time stepping of HLS94 over that of a standard explicit method.

In Fig. 24, two snapshots of a typical simulation are shown at the very late stages of
coarsening. In this simulation, the precipitate area fraction is 0.5 and periodic boundary
conditions are applied to the unit cell. In Fig. 24a, there are approximately 130 precipitates
remaining, while in Fig. 24b there are only approximately 70 precipitates left. Note that
there is no discernible alignment of precipitates. Further, as the system coarsens, the typical
shape of a precipitate shows significant deviation from a circle.

By using such large systems, AM96 were able to analyze the statistics. Their simulations
agree with the classical Lifshitz–Slyozov–Wagner (LSW) theory [117, 205] in which the
average precipitate radius〈R〉 is predicted to scale as〈R〉 ∼ t1/3 at large timest . As seen in
Fig. 24, AM96 find the persistence of non-circular precipitate shapes. Interestingly, although
the particles are not circular, certain statistics, such as the particle size distribution functions,
are found to be insensitive to the non-circular particle shapes at even at moderate volume
fractions [1]. At volume fractions greater than 0.5, the simulations become more difficult as
the resulting small inter-particle spacings necessitate the use of adaptive refinement in space
to accurately discretize the dipole and velocity integrals as well as adaptive refinement in
time to accurately track the interfaces. This remains to be done in the future.

4.3.2. The Homogeneous Elasticity System

In homogeneous elastic media, the derivatives of the displacement field due to a misfitting
precipitate may be evaluated directly from the Green’s function tensor via the boundary
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integral

u j,k(x) = (Ci j 11+ εr Ci j 22)

∫
0

gi j ,k(x, x′)n′l ds′, (69)

wherex is either in the matrix or in the precipitate and

Ci jkl = 2c66δikδ j l + c12δi j δkl − (c11− c12− 2c66)δi jkl ,

for cubic systems; here we do not use compact notation. The misfit tensorET is assumed
to take the form

ET =
(

1 0
0 εr

)
, (70)

whereεr is a constant. In two space dimensions, one may find an effectively analytic
form for gi j ,k that depends on the anisotropy ratioA = 2c66/(c11− c12). Taking the limit
asx→ x(s) ∈ 0, the result involves a rather complicated principal value integral whose
exact form we do not present here; we instead refer the reader to [182, 183, 188, 204]. We
note thatgel is easily constructed onceu j,k has been obtained (also see [204] for example).

The current state of the art in simulating diffusional evolution in homogeneous, anisotropic
elastic media is the recent work of Thorntonet al. (TAV99) [189–191] in which the coars-
ening of large cubic systems is studied. In metallic alloys, such a system can be considered
as a model for nickel–aluminum alloys, since in those alloys the precipitates and matrix
both have face-centered-cubic lattices with elastic constants typically differing by less than
10% [122]. TAV99 combined the improvements in interface tracking due to HLS94 and
in the diffusion solver due to AM96 and GGM93. In addition, TAV99 developed a fast
multipole method to evaluate the elasticity integral in Eq. (69). With these improvements,
TAV99 achieved an enormous gain in computational efficiency and are now able to analyze
the statistics of microstructure evolution in homogeneous elastic media.

In preliminary work, TAV99 have performed simulations involving over 4000 precipitates
initially. As in AM96, precipitates are removed when their area reaches a certain lower
tolerance. See Fig. 25 for results withZ = 2.0, 4.1 and 6.1 and with isotropic surface
tension and dilatational misfits. The value ofZ is allowed to vary dynamically through
an average precipitate radius. Thus, as precipitates coarsen and grow larger,Z increases
correspondingly. The initial volume fraction of precipitates is 0.1 and simulations are started
with Z = 1. TAV99 find that the morphological evolution is significantly different in the
presence of elastic stress. Unlike the purely diffusional case and consistent with experimental
results, large-scale alignment of particles is seen in the〈100〉 and〈010〉 directions during
the evolution process. In addition, there is significant shape dependence as nearly circular
precipitates are seen at smallZ = 2.0, while at Z = 4.1 and Z = 6.1, precipitates are
squarish and rectangular, respectively. As in AM96, certain features of the process are
insensitive to the shape variation and work is continuing to determine the asymptotic rate
of increase of〈R〉 in time.

4.3.3. The Inhomogeneous Elasticity System

While the elastic constants of the nickel–aluminum precipitates and a nickel matrix may
differ by only 10%, there are other nickel-based alloys in which the elastic constants may
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FIG. 25. Coarsening in homogeneous, cubic elasticity. Upper graph: early time (Z = 2.0); Middle graph:
moderate time (Z = 4.1); lower graph: late time (Z = 6.1). Graph courtesy of Thornton, Akaiwa, and Voorhees
[190].

differ by more than 50%. Examples of such systems include nickel–silicon and nickel–
gallium precipitates in a nickel matrix. It therefore is important to be able to account for
elastic inhomogeneity. Indeed, the results of many investigations now indicate that even
small elastic inhomogeneities may significantly impact precipitate evolution (e.g., [93, 112,
114, 115, 140, 162, 168, 169]).

The inhomogeneous elasticity system (57)–(60) is much more difficult to solve than
the homogeneous system. Unlike the homogeneous case, integral equations must now be
solved in order to obtain the inhomogeneous elastic fields. The elasticity system (57)–(60)
may be reformulated in terms of boundary integrals as follows. Letui (s) andti (s) be the
components of displacement and traction on the boundary, respectively. One may then use
a direct approach, involving both elastic monopoles and dipoles, to obtain a system of four
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coupled integral equations for the displacement and traction components on each interface0,

u j (s)

2
+
∫

0

uk(s
′)T P

kj (x(s), x(s′)) ds′ −
∫

0

tk(s
′)U P

kj (x(s), x(s′)) ds′

=
∫

0

t T
k (s′)U P

kj (z(s), z(s′)) ds′, (71)

− u j (s)

2
+
∫

0

uk(s
′)T M

kj (x(s), x(s′)) ds′ −
∫

0

tk(s
′)U M

kj (x(s), x(s′)) ds′

= − uA
j (x(s))

2

∫
0

uA
k (s′)T M

kj (x(s), x(s′)) ds′ −
∫

0

t A
k (s′)U P

kj (x(s), x(s′)) ds′, (72)

where0 = ∪i 0i andU P(x, x′), U M(x, x′) are the fundamental solution tensors in the pre-
cipitate and matrix domains (considered separately) that generate displacement vectors
u j (x) arising from an isolated point source located atx′ in the precipitate and the matrix
respectively. In Eq. (72),T P andT M are the analogous traction tensor fields. We do not give
the exact form ofUχ andTχ here; instead we refer the reader to JLL97 for the isotropic
case and LLN00 for the orthotropic case (see also [153, 154, 168, 169]). TheUχ contains
both smooth and logarithmic functions while theTχ contains both smooth functions and
functions with Cauchy-type singularities; theTχ integrals are interpreted in the principal
value sense. Finally, in Eqs. (71) and (72),tT is the traction vector due to the misfit strain
in the precipitatetT = CET anduA andt A are the displacement and traction vectors of a
constant applied stress field6A.

The small scale decomposition for integral equations.Although the system (71), (72)
is a Fredholm equation of mixed type with smooth, logarithmic, and Cauchy-type kernels,
it was shown by JLL97, in the isotropic case, and by LLN00, in the anisotropic case, that it
may be transformed directly to a second kind Fredholm system with smooth kernels. The
transformation relies on an analysis of the equations at small spatial scales and is in spirit
like the SSD in the fluid dynamic context. Classical Fredholm theory [152] may be used
to guarantee the existence and uniqueness of solutions since the displacement is uniquely
specified at infinity (uA).

If Eqs. (71) and (72) are discretized directly, the condition numbers increase at least
linearly with N (the total number of points) due to the logarithmic kernels. The condition
number also increases slowly as the number of precipitatesp increases. To overcome this
ill-conditioning, JLL97 and LLN00 performed a small scale analysis of the equations to
determine the dominant terms at small scales in the spirit of HLS94. For example, suppose
a system of integral equations may be written as

A[u, t] = f (73)

and suppose thatA ∼ L at high wave-numbers, while the remainder involves integration
against smooth kernels. Then one may write

A = L+R. (74)

If L is diagonalizable in Fourier space, and so is easily inverted using the FFT, one may
rewrite Eq. (73) as

(I + L−1R)[u, t] = L−1f, (75)



BOUNDARY INTEGRAL METHODS 347

which is a second-kind Fredholm equation. When discretized, Eq. (75) is well conditioned
[93]. See [219], for example, for an application to a first-kind Fredholm equation for the
Dirichlet problem.

Application to the inhomogeneous elasticity integral equations.In the elasticity case,
the SSD reveals that the dominant operator at small scales is

L = (L1,1,1, . . . ,L1,1,p,L1,2,1, . . . ,L1,2,p,L2,1,L2,2), (76)

where the components ofL are then given by

L1,l , j [u, t] = 1

2
ul − DP

1lkH[uk] − DP
2lkH[ t̃ k], (77)

L2,l [u, t] = 1

2
ul − DP

1lkH[uk] − DM
2lkH[ t̃ k], (78)

and ∂α t̃ k = L j tk/2π and DP,M
1,2 depend only on the elastic constants (see [93, 112] for

details). Note that theuk and t̃ k that appear on the right hand sides of Eqs. (77) and
(78) are only evaluated on0 j . In contrast,A involves evaluation ofuk and tk on all the
precipitate/matrix interfaces∪ j 0 j . AlthoughL is a nonlocal operator, solving

L[u, t] = b

only involves inverting a 4× 4 matrix in Fourier space sinceL is diagonalized by the Fourier
transform. This ismuchsimpler than solving the full system. Further, if the precipitate/matrix
boundaries are smooth, then the remainder operatorR involves integration against smooth
kernels and thus is a smoothing operator. Roughly speaking, this means that as an operator,
R has a rapidly decaying Fourier symbol [93]. This type of small scale decomposition
for integral equations obviates the need to use Goursat functions to formulate second-kind
equations directly for the elasticity system [73, 129]. Typically, this SSD preconditioning
reduces the iteration count by about a factor of about 5 over that for the unpreconditioned
system [93, 112]. What remains of the original ill-conditioning is thatL̂−1 ∼ |k| for large
wave-numbersk. Thus, numerical errors inf are amplified by the application ofL−1.
Numerical filtering [81, 104] is used to control this amplification.

We remark that Greengard and Helsing (GH98) [73] have recently developed a fast
algorithm for computing elastic fields in isotropic, inhomogeneous elastic media. Their
algorithm is based on an indirect integral equation approach using complex potentials,
due to Sherman [177], combined with the fast multipole method and adaptive Gauss–
Legendre quadrature. In this approach, a single second kind Fredholm equation for each
interface is obtained directly for a Cauchy layer potential. This alone presents an enormous
savings over the direct approach discussed where four equations must be solved for each
interface. However, the methods of GH98 currently only account for applied fields and
not for precipitate misfit strains. Nevertheless, this approach is very promising for use in
microstructure evolution and Helsing and Lowengrub are studying its extension to the case
of misfitting precipitates.

4.3.4. Interface Tracking in the Face of Anisotropy

LLN00 observed that certain microscopic details of the numerical solution, such as
c0, may depend sensitively on the numerical time-integration algorithms. This sensitive
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dependence arises when large gradients are present. Such gradients are typically associated
with the formation of “corners” or regions of high curvature. Since corners naturally arise in
equilibrium precipitate shapes in the presence of anisotropy, care must be taken to compute
the solutions accurately. Time stepping methods based on an integrating factor approach, as
in Eq. (47) tend to overdamp the numerical solution. This may cause oscillations to occur in
c0 and prevent attaininġWtot = 0 (computed from Eq. (63)) as equilibrium is approached.
Macroscopic properties such as particle shapes and curvatures are less sensitive to the
algorithms.

LLN00 developed accurate time discretizations by requiring that certain properties of
the continuous equations be maintained on the discrete level. For example, in equilibrium,
there is an exact balance between the linear and nonlinear terms in Fourier space,

m(k)

(L∗)3
θ̂∗(k) = N̂∗(k), (79)

where∗ denotes the equilibrium value (recall Eq. (42)) andm(k) = (2π |k|)3. It is straight-
forward to see that the integrating factor method in Eq. (47) violates this condition. The
amount by which condition (79) is violated will be small if eitherθ̂∗ is exponentially small
or m1t is small. If large gradients are present,θ̂∗ may be exponentially small only for
rather large wave-numbersk and hence very largem. For example, suppose exponential
decay is observed for|k| > k∗, then the error is small only ifm(k∗)1t ¿ 1. This is an
accuracyrestriction. If this is violated, then the error term may be significant even though
the integrating factor method is formally second order accurate in time. Typically,c0 and
Ẇtot are sensitive to this error while interface position and curvature are not.

If k∗ is large, then the accuracy conditionm(k∗)1t ¿ 1 may be very restrictive. By
reducing the degree of damping at high wave-numbers, the accuracy restriction may be
removed completely while the overall order of accuracy is maintained. Reducing the amount
of damping does narrow the stability region of the numerical scheme, however. LLN00
considered three numerical schemes for which Eq. (79) is satisfied exactly on the numerical
level. The scheme that is found to perform the best is given by

ˆ̃θ
n+1 = 1

1+m(I n+1− I n−1)em(I n−I n−1)

ˆ̃θ
n−1+ 24t

N̂n

m(I n+1− I n−1)+ e−m(I n−I n−1)
.

(80)

In this scheme, the linear term is damped exponentially, while the nonlinear term is damped
only algebraically.

4.3.5. Results on Microstructure Evolution in Inhomogeneous, Isotropic Elastic Media

The current state of the art in simulating microstructure evolution in inhomogeneous,
isotropic elastic media is the work of JLL97. In their approach, the interface tracking of
HLS94 is combined together with the diffusion solver of GGM93 and with the elasticity
solver described above. The method of JLL97 is spectrally accurate, although a 25th-order
accurate Fourier filter is used to control numerical aliasing error (e.g., see HLS94).

JLL97 investigated both growth and coarsening of systems of precipitates with isotropic
surface tension. In the case of a shear misfit tensor (i.e.,ET

11 = −ET
22, ET

12 = 0), which
introduces cubic anisotropy, growing shapes of single precipitates are seen to be dendritic
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FIG. 26. A series of different precipitate shapes under growth conditions in isotropic, inhomogeneous elastic
media with shear misfit. In (a)–(c), the flux isJ = 10. In (a), the shear modulus of the precipitate is twice that of
the matrix. In (b), the opposite case is shown. In (c), there is no elasticity (Z = 0). In (d), the nonconvex shape is
from (a) at timet = 20, whereas the convex shape is the corresponding equilibrium shape. Graph courtesy of Jou
et al. [93].

while equilibrium shapes are squarish. See Fig. 26 for a sample of results. In (a) and (b), the
numerical flux isJ = 10. In (a), the shear modulus of the precipitate is half of that of
the matrix (soft precipitate) while the opposite is true in (b) (hard precipitate). Note that
the dendrite arms are more slender for the soft precipitate than for the hard precipitate.
In addition, wiggles form on the dendrite arms of the soft precipitate, which indicates
additional instability in the soft case relative to the hard. We also note that the observed
dendritic structure in both cases qualitatively resembles that obtained using no elasticity
(Z = 0), but anisotropic surface tension [4] (see Fig. 14). In Fig. 26e, the corresponding
case with isotropic surface tension andZ = 0 is shown. Note the isotropic nature of the
curve, as well as the occurrence of tip splitting, is suppressed by the elasticity. In Fig. 26d,
the convex curve corresponds to the equilibrium precipitate shape obtained by settingJ = 0
at t = 20 for the soft precipitate (the non-convex shape shown in the figure).

In Fig. 27, a sample simulation is shown of 16 precipitates coarsening (J = 0) in inhomo-
geneous, isotropic elastic media. Precipitates are removed when their area drops below 0.1.
Because of the isotropic surface tension and choice of misfit (tetragonal withET

11 6= ET
22 > 0,

ET
12 = 0), the precipitates develop roughly elliptical shapes. An overall classical coarsening

behavior occurs as large precipitates grow at the expense of small ones. Further, over the time
scales shown, there is no significant precipitate translation or alignment. Thus, it appears
that alignment is a secondary process that occurs after shape changes and coarsening.

When precipitates are removed, the surface and elastic energies are continuous but the
surface energy is kinked. In fact, it may be shown thatẆtot ∼ (tc − t)−2/3 [93]. This may
be seen explicitly in Fig. 28, whereW andẆ are shown for the simulation in Fig. 27. As
expected,Ẇtot drops sharply just before a precipitate is removed. Because precipitates are
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FIG. 27. The coarsening of 16 precipitates in an isotropic, inhomogeneous elastic media. Graph courtesy of
Jouet al. [93].

removed after their area drops below 0.1, their size when they are actually removed varies.
Thus, the drops iṅWtot vary. Interestingly, theenvelopeof Ẇtot appears to be a continuous
curve which suggests that the overall evolution is insensitive to precipitate removal.

4.3.6. Results on Microstructure Evolution in Inhomogeneous, Anisotropic Elastic Media

The current state-of-the-art in simulating microstructure evolution in inhomogeneous,
orthotropic elastic media is the work of LLN00. In their method, LLN00 coupled the
diffusion solver developed by GGM93 together with a solution of the orthotropic Rizzo–
Shippy elastic integral equations with small scale preconditioning. Because no fast algorithm
yet exists for evaluating the elasticity integral equations, an efficient parallel implementation
of direct summation was used for both the diffusion and elastic systems.

LLN00 found that even small elastic inhomogeneities may have a strong effect on pre-
cipitate evolution. For instance, in systems where the elastic constants of the precipitates
are smaller than those of the matrix, the precipitates move toward each other; The rate of
approach depends on the amount of inhomogeneity. Anisotropic surface energy may either
enhance or reduce this effect.
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FIG. 28. The behavior of the energyW andẆ for the coarsening simulation shown in Fig. 27. The filled
circles correspond to the times at which precipitates are removed. Graph courtesy of Jouet al. [93].

To illustrate this effect, consider the evolution of four types of precipitates in a nickel
matrix: (i) homogeneous (Ni), (ii) nickel–silicon (Ni3Si), (iii) nickel–aluminum (Ni3Al),
and (iv) nickel–gallium (Ni3Ga). The Ni3Si precipitates have larger elastic constants (hard)
than the Ni matrix, while both the Ni3Al and Ni3Ga precipitates have smaller constants
(soft) than the matrix. Moreover, both the precipitates and matrix are cubic anisotropic with
anisotropy ratioA > 1. See LLN00 for details.

In Fig. 29, the evolution of two precipitates is shown for each of the systems (i)–(iv).
The initial configuration in all cases consists of two unit circles separated by a distance of
1 unit. Z = 5 for all cases. For the homogeneous case and the case with Ni3Si particles,
the final times correspond to when particle evolution essentially ceased. For the cases with
Ni3Al and Ni3Ga particles, the final times correspond to when the interparticle spacing was
too small to resolve the interfaces for the numerical parameters used.

We observe that the spacing between the hard Ni3Si particles is larger than the spacing
between the homogeneous particles, while the spacing between the soft Ni3Al and Ni3Ga
particles is smaller than the spacing between the homogeneous particles. This is consistent
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FIG. 29. The behavior of two precipitates in inhomogeneous, cubic anisotropic elasticity. Graph courtesy of
Leoet al. [112].

with simulations in isotropic media where that hard particles repel, while soft particles attract
[93]. However, the situation is more complex with anisotropic elasticity. In the homogeneous
and the Ni3Si case, the particles move towards each other with very small velocities which
tend to zero at a finite interparticle distance. In the Ni3Ga case, the interparticle attraction
increases as the interparticle spacing decreases. This suggests the particles will merge. In
the Ni3Al case (which is nearly homogeneous), however, the interparticle attraction begins
to decrease when the particles are very close to one another. More refined calculations are
necessary to determine whether there is in fact a small non-zero interparticle spacing in
this case. The difference between the Ni3Ga and Ni3Al cases is also reflected in the particle
shapes in the interparticle region; in the Ni3Ga case, the particles appear to curve toward
each other, while in the Ni3Al case, the two particles have “squared off” against each other.

Finally, we conclude this section by presenting some recent preliminary results, obtained
by LLN00 [111], which indicate that an elastically driven morphological instability may
occur in the presence of applied fields. Inhomogeneity plays a crucial role in the instability
as an analogous instability has not yet been observed in homogeneous systems [111].
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FIG. 30. The elastic morphological instability of a misfiting singleNi3Si precipitate in an applied shear. In
(a), Z = 5. In (b), Z = 3. In (c), a homogeneous precipitate is shown for comparison withZ = 5 andZ = 10.
Graph courtesy of Leoet al. [111].

Moreover, the instability apparently leads to precipitate splitting. This may be the source of
splitting observed in experiments [94, 217] for example. A similar morphological instability
has been observed in simulations using the discrete atom method [108, 109].

The elastic morphological instability may be seen in the following context. Consider the
evolution of a single Ni3Si precipitate with applied shear and dilatational misfit. This is
shown in Fig. 30a withZ = 5 and isotropic surface tension. In this simulation, the initial
condition is a circle. The interface is then shown at subsequent times near pinch-off. Observe
that the interface forms two interpenetrating fingers that grow toward one another, strongly
suggesting that the precipitate will split into two platelike precipitates with long axes oriented
in thex2-direction. There is a very slight amount of asymmetry in the plot due to numerical
error and more refined simulations are currently being performed; convergence tests at
earlier times confirm that the instability is physical and not numerical. For the purposes of
comparison, Fig. 30b shows the evolution of the precipitate withZ = 3. In this simulation,
there is a hint of instability at small times although the precipitate boundary stabilizes
and becomes elliptical. In Fig. 30c, the evolution of a homogeneous precipitate is shown
with Z = 5 (solid squarish line) andZ = 10 (dashed line). In the homogeneous case, the
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precipitate converges to a squarish equilibrium shape which is remarkably different from
that seen in the inhomogeneous cases.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented a brief review of the application of boundary integral
methods in two dimensions to multicomponent fluid flows and multiphase problems in
materials science. In particular, we have focused on results from the recent development of
methods which accurately and efficiently include surface tension. In fluid flows, we have
examined the effects of surface tension on the Kelvin–Helmholtz and Rayleigh–Taylor
instabilities, the generation of capillary waves on a free surface, and problems involving
pattern generation and selection and singularity formation in Hele-Shaw flows. In mate-
rials science, we discussed microstructure evolution in diffusional phase transformations
and the effects of the resulting competition between surface and elastic energies on the
microstructure morphology.

The significant recent developments underlying these simulational studies are (i) the
analyses of BHL93/BHL96 and BN98 which identify and correct instabilities generated by
spatial discretization, and most especially (ii) the introduction of the SSD by HLS94/HLS97
to develop very efficient and accurate time discretization methods. Until these works, simula-
tions were fraught with numerical instability and were greatly limited in accuracy and tempo-
ral evolution. The above works have provided the backbone of new classes of methods which
have enabled the study of much more complex phenomena than was previously possible.

Many challenges remain for the future. These include the extension of the ideas presented
here to more complicated flows such as those involving viscosity and/or elastic boundary
forces (e.g., from simulations of heart function), as well as to axisymmetric and 3-D inter-
face evolution. In axisymmetric flows, the SSD has recently been extended to the vortex
sheet case by Nie [135], and to axisymmetric porous media flow by Ceniceros and Si [37].
The development of accurate and efficient boundary integral methods for interface evolution
in 3-D is a highly non-trivial problem and has been the subject of much recent research (see,
for example [20, 76, 83, 84]). The development of efficient and accurate time-stepping algo-
rithms in 3-D, analogous to those in 2-D based on the SSD, is an outstanding problem. In the
materials science context, where the time-step restrictions are third-order, the development
of efficient time integration methods is crucial. Although there have been three dimensional
boundary integral simulations recently performed by Thompson and Voorhees [187] for
homogeneous systems and by Mueller and Gross [133] for inhomogeneous systems, those
works were limited by spatial and temporal resolution requirements.
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