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We present a brief review of the application of boundary integral methods in two
dimensions to multicomponent fluid flows and multiphase problems in materials
science. We focus on the recent development and outcomes of methods which accu-
rately and efficiently include surface tension. In fluid flows, we examine the effects
of surface tension on the Kelvin—Helmholtz and Rayleigh—Taylor instabilities in in-
viscid fluids, the generation of capillary waves on the free surface, and problems
in Hele-Shaw flows involving pattern formation through the Saffman—Taylor insta-
bility, pattern selection, and singularity formation. In materials science, we discuss
microstructure evolution in diffusional phase transformations, and the effects of the
competition between surface and elastic energies on microstructure morphology. A
common link between these different physical phenomena is the utility of an analysis
of the appropriate equations of motion at small spatial scales to develop accurate and
efficient time-stepping methods g 2001 Academic Press

1. INTRODUCTION

The past 15 years have seen the rapid development of numerical methods, especia
two dimensions, for applying boundary integral methods to multifluid problems in flui
dynamics, and more recently to multiphase problems in materials science. By multifl
or multiphase we mean systems where the constitutive properties of the fluid or mate
change abruptly at a dividing interface. The case of immiscible fluids, such as oil a
water, stands as the classical example. An important complicating property of such syst
is surface tension (or surface energy in the materials context). Much recent effort in
application of boundary integral methods has focused on developing numerical meth
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that efficiently and accurately include surface tension. And while boundary integral meth
are applicable only to a restricted type of flow problem, these problems are centra
fluids and materials science. In fluids, these problems include those producing protot
patterns, the first nonlinear stages of immiscible fluids mixing, the development of fini
time singularities, and capillary wave generation in water waves. In materials science, tt
problems include morphology selection in phase—transition dynamics and many-precipi
coarsening, under various types of material anisotropy.

In this paper, we review recent applications of boundary integral methods to simul
interfacial dynamics of multicomponent fluids and multiphase materials with surface tens
in two dimensions. A boundary integral representation applies when, for example,
partial differential equations (PDEs) governing the bulk fluid or material are piecewi
homogeneous, and for which a Green’s function can be found or approximated. In s
cases, the dynamics of the system can be reduced to the self-contained, nonlocal dyne
ofthe interface separating the homogeneous fluids or phases. In fluid dynamics this typic
means that we are dealing with potential flows (e.g., inviscid and irrotational flows, He
Shaw flows) or Stokes flows. (Except in special cases we neglect the latter, as Stokes f
are the subject of a separate review in this volume.) Boundary integral methods are
(immediately) applicable to more general interfacial fluid flows, such as those goverr
by the viscous Navier—Stokes equations. In the materials science context, we focu
diffusional phase transformations whose formulation is closely related to that of Hele-St
flows.

For a few specific problems in these areas, we present a historical perspective and
discuss what we believe to be the state of the art in numerical simulation. Because of
limited scope of our review, we refer the reader to more general reviews of interfacial flt
flows by Hou [85], Hyman [88], Prosperetti and Oguz [145], Romate [158], Sarpkaya [16!
Scardovelli and Zaleski [167], Schwarz and Fenton [170], Stone [180], Tsai and Yue [1¢
and Yeung [215]. For diffusional phase transformations in materials science, see the n
general reviews by Johnson and Voorhees [92], Purdy [150], and Voorhees [201, 202].

In addition, it is important to note that there are other, more general, numerical
proaches to simulating free boundary problems in fluids and materials. These include le
set, volume-of-fluid, immersed boundary, front-tracking, phase-field, and discrete at
methods. Several of these approaches are the subject of separate reviews in this vol
and here we focus exclusively on boundary integral methods. When applicable, boundar
tegral methods outperform these other methodologies in accurately and efficiently captu
the dynamics. And so, while being applicable to a core set of problems in fluid dyna
ics and materials, boundary integral methods provide excellent benchmark simulations
comparing these different computational strategies.

There are several difficulties in including the effects of surface tension in a simulatic
First, as the pressure jump due to surface tension at an interface is proportional to the
terfacial curvature, a high number of spatial derivatives are introduced into the dynam
This results in high-order constraints on explicit time-stepping methods. Second, se
ingly natural choices of frame in which to compute the interfacial motion can make the
constraints strongly time-dependent, and prohibitive. And third, due to the divergence
condition on the fluid velocity, these curvature dependent terms enter the dynamics no
cally and nonlinearly. Such difficulties are not specific to the inclusion of surface tensi
but also arise when dealing with the dynamics of surfaces or curves that have elasti
other curvature-dependent responses.
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Within the context of boundary integral methods for two-dimensional potential and Hel
Shaw flows, we show in HLS94 [81] how these difficulties arising from surface tension c
be subverted, and efficient and accurate numerical methods constructed. This relie
part on the “small-scale decomposition” (SSD), a mathematical analysis which identif
the source of stiffness by examining the equations of motion at small length-scales.
SSD analysis shows that when the equations of motion are properly formulated, surf
tension acts through a linear operator at small length-scales. This contribution can the
treated implicitly and efficiently in a time-integration scheme, and the high-order constrai
removed. The consequent improvements in efficiency and results can be dramatic.
example, in HLS94 we simulated the very long-time development of densely branct
patterns in radial Hele-Shaw flow, and suggested the formation of “topological singularitie
in the Kelvin—Helmholtz problem with surface tension. This latter study was continued
HLS97 [82], where we developed nonuniform grid methods, used high-order time-steppi
and quantified many aspects of this singularity through careful numerical simulation. H
we will review many other related efforts and works.

These analytical approaches might point the way to the development of similar me
ods in more complicated situations. For example, simulations of heart function using
immersed boundary method are currently constrained in time-step by the stiffness indu
by “fiber” elasticity, which is a curvature-dependent boundary force (C. Peskin, prive
communication). In this situation, one must also consider the rotational and viscous asp
of the fluid flow, set in a very complicated geometry.

In Section 2, we discuss the application of boundary integral methods to inviscid a
incompressible multifluid flows with surface tension. The prototype problem is the no
linear development of the Kelvin—Helmholtz problem under surface tension. We disct
extensions to the Rayleigh—Taylor instability and water waves. In Section 3, we disct
the application of boundary integral methods to Hele-Shaw flows, to the study of patt
formation and morphology selection, and singularity formation. In Section 4, we discuss
application of boundary integral methods to diffusional phase transitions in materials <
ence. Section 5 gives concluding remarks and discusses future directions in the applice
of boundary integral methods.

2. INVISCID INTERFACIAL FLUID FLOWS WITH SURFACE TENSION

In this section, we present a brief review of recent applications of boundary integ
methods to study inviscid, incompressible interfacial flows with surface tension in tv
dimensions. In particular, we focus on the nonlinear evolution of vortex sheets separa
two immiscible fluids and the dynamic generation of capillary waves on a free surface.

Many physically interesting fluid flows involve the motion of interfaces separating in
miscible flow components with small viscosity. In flows where there is rapid motion, tt
effects of viscosity may be secondary in importance to those of surface tension. Thisis |
ticularly evident in shear flows [196]. Moreover, surface tension is central to understand
fluid dynamic phenomena such as droplet formation and capillary wave motion.

Surface tension at an interface separating two immiscible fluids arises due to an imbalz
of the fluid components’ intermolecular cohesive forces. It is modeled through the Laplac
Young condition, which relates the pressure jump across an interface to the interfa
curvature. As mentioned in the Introduction, the accurate simulation of interfaces w
surface tension is a problem of considerable difficulty, and stable, efficient, and accul
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boundary integral methods have been developed only recently. We review work tha
representative of the current state-of-the-art research in this field.

2.1. Historical Perspective

The use of boundary integral methods in inviscid interfacial flows in two dimensiol
has a long and rich history that dates back to the 1932 study of vortex sheet roll-up
Rosenhead [160]. Much later, Birkhoff [26] developed a boundary integral formulation f
more general interfacial motion. In 1976, Longuet-Higgins and Cokelet [120] developed
first successful boundary integral method to compute plunging breakers. Since then, n
boundary integral methods have been developed to simulate free-surface Euler flows.
[5, 11, 13-19, 21, 22, 27, 33, 34, 43, 49, 53, 54, 64, 81, 82, 103-105, 132, 134, 147, :
155, 156, 172, 197, 199, 200, 209, 214, 215, 220] for a small sample. For a more comf
set of references, see the review articles listed in the Introduction and the references the
While where as it is not our goal to review all of this work here, we point out that tf
origins of many modern boundary integral algorithms can be traced to the seminal pc
of Bakeret al. (BMO82) [14]. In that paper, a detailed derivation of the boundary integr:
equations is given and the use of iteration methods, to solve the resulting integral equati
is pioneered. BMOB82 then applied the methods to study breaking waves over finite-bot
topographies and interacting free-surface waves.

The study of interfacial flows with surface tension in two dimensions using bounda
integral methods began with the work of Zalosh [218] in which the nonlinear evolution of
vortex sheet was considered (density-matched components). Subsequently, other me
have been developed for flows with different density flow components, by many othi
including Baker and Moore [15], Boulton-Stone and Blake [27], Kudela [105], Pullin [149
Rangel and Sirighano [151], Robinson and Boulton-Stone [156], Rottman and Olfe [16
Tulin [199], and Yang [214].

All of the boundary integral methods listed exhibit numerical instability that require

some type of ad-hoc numerical smoothing to yield smooth evolution. The primary dif
culty with using smoothing is that it can lead to unphysical results because the effect
smoothing may dominate those of surface tension. In independent works,eBaalf 8,
19, 22] and Baker and Nachbin (BN98) [11] identified certain incompatibilities in the spat
discretization of the boundary integral equations, both with and without surface tensi
These incompatibilities were shown to lead to numerical instability of the type observec
previous studies. Bealet al. and BN98 presented alternative, highly accurate, and stab
methods.

Additional difficulties occur when the equations are discretized in time. The different
clustering of interface grid points may result in prohibitive time-step restrictions for stabili
for explicit time integration methods because of the high-order derivative terms introduc
by surface tension. Because the surface tension appears in the equations nonlocall
nonlinearly, standard implicit time-stepping methods are very expensive. To overcome tt
difficulties, Hou, Lowengrub, and Shelley (HLS94, HLS97) [81, 82] derived an alterna
formulation of the equations which has all the nice properties for time integration schen
that are associated with having a linear highest order term (such as diffusion term in
Navier—Stokes equations). For example, the methods givenin HLS94 and HLS97 are exf
in Fourier space and do not have the severe time-step restrictions usually associated
surface tension. The methods are then used to study the nonlinear, long-time evolutic
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vortex sheets with surface tension, interfaces between fluid components with small der
differences (Boussinesq approximation) and Hele-Shaw interfaces.

Later, Ceniceros and Hou (CH98) [33] proved convergence of a semidiscrete (tin
continuous) version of the methods proposed in HLS94/HLS97 for general two-fluid int
facial flows. CH98 also carefully investigated the effects of surface tension on the Rayleic
Taylor instability. In addition, Ceniceros and Hou (CH99a) [34] applied the methods
HLS94/HLS97 to study capillary waves on free surfaces.

Although it is beyond the scope of our review, the use of boundary integral methods
axisymmetric and 3-D interfacial flows is also a very active research area. See, for exam
[10, 20, 28, 37, 76, 83, 84, 121, 123, 136, 138, 139, 158, 159, 198]. We note that v
recently, Nie [135] has extended the methods of HLS94/HLS97 to study the nonline
evolution of axisymmetric vortex sheets with surface tension.

2.2. Boundary Integral Formulation

Consider two inviscid, incompressible, and irrotational fluids separated by the pa
metrized planar interfadeégiven byX (o) = (X(@), y()), as shown schematically in Fig. 1.
The lower fluid is denoted 1, and the upper fluid is denotddahds are, respectively, the
unit normal and tangent vectorsp whereax is its curvature. For simplicity, the density
is assumed to be constant on each side.ddere, the velocity on either side Bfis evolved
by the incompressible Euler equations

1
Ujt + (Uj - Viuj = —;V(pj +0j9y), V-u; =0, 1)
j

where the subscrigt denotes the upper or lower fluid. There are the boundary condition

(i) [u]r - A = 0, the kinematic boundary condition (2)

(i) [plr = t«, the dynamic boundary conditipand 3)

(iii) uj(X,y) = (£Vx, 0) asy — Foo, the far-field boundary condition  (4)
Here, [] denotes the jump taken from above to belbwThe tangential component of

fluid velocity is typically discontinuous dt. Such an interface is calledrartex sheet(see
[164]). The velocity at a poink away from the interface has the integral representation

(X = X))t
ux) = /(>|X e (5)

Fluid 2

X(o,t)

Fluid 1

FIG. 1. A schematic of an interfacé separating two immiscible fluids.
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where X+ = (-y, x). y is called the (unnormalized) vortex sheet strength. It gives th
velocity difference acrosB by
. Y -
="—"=—[u]r-§ 6
r=s [ullr (6)
wheres, = \/x2 + y2 is the arclength metric. The velocity jumyis called the true vortex
sheet strength. This representation is well known; see [14]. We will consider flows tl
are 1-periodic in the-direction. The average valug, of y over a period inx satisfies
—7/2 = V.
While there is a discontinuity in the tangential component of the velocity tite normal
componenty (@), is continuous and is given by (5) as

U(a) = W(a) - A, (7
where

X(@) = X(@)* do
————— U

1 I
W(x) = EP.V. / y(a') X(@) = X(a’)|2

C)

and P.V. denotes the principal value integral. This integral is called the Birkhoff—Rott in
gral.

Using the representation (5) of the velocity, Euler's equation at the interface, and
Laplace—Young condition, the equations of motion for the interface are

Xi=UA+T5 9)
. .1 . .
n—0(T—-W-§y/s,)=-2A, (wat -5+ éaa(y/sa)z —(T-W-9W, - S/Sx)
— Frly, + Welk,. (10)

Here, the equations have been nondimensionalized on a periodicity leagtithe velocity
scaley, and

A . .
A, = 2—'(1 is the Atwood ratio (11)
0
__2)\2
Fr = Lg is the Froude number, and (12)
g(Ap)A
%
We= - is the Weber number (13)
T

whereAp = p1 — po, andp = (p1 + p2)/2. The Froude number measures the importanc
of inertial forces relative to gravitational forces, whereas the Weber number measures
importance of inertial forces relative to the dispersive forces of surface tension forces.

T isan (as yet) arbitrary tangential velocity that specifies the motion of the parametrizat
of I'. The so-calledlagrangian formulatiortorresponds to choosing the tangential velocity
of a point on the interface to be the arithmetic average of the tangential components of
fluid velocity on either side. That is, choosifig= W - §, in which case Eq. (10) simplifies
considerably.
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Equation (10) is a Fredholm integral of the second kindfatue to the presence gf in
W;. This equation has a unique solution, and is contractive [14]. The meais ireserved
by Eg. (10) and must be chosen to b8V, initially, to guarantee that conditiorii() is
satisfied. Further, while is evolved as an independent variable, it cannot be interprete
independently of the parametrization. From Eq. (6), it is the ratie y /s, that has a
physical interpretation, angl is determined by the choice of.

Equation (9-10) realize different physical situations in different limits of the nondimel
sional parameters. For example, takig= —1 gives the classical Rayleigh—Taylor prob-
lem regularized by surface tension. Takifyg = +1 gives water waves with surface tension.
Taking A, = Fr~! = 0 gives the Kelvin—Helmholtz problem of two density-matched, im-
miscible liquids. All of these problems will be considered in the following sections.

2.3. The Sources of Stiffness and the Small-Scale Decomposition

For the Kelvin—Helmholtz problem, a natural choice of frame is the so-calle
“Lagrangian” frame in whichT = W - s. That is, the interface moves with the average
of the velocities on each side. The problem is then completely characterized by the We
numberWe and the Lagrangian formulation of the equations of motion becomes simply

Xi(a, t) = W(a,t) and (14)
nla, t) = We k. (15)

It is this compact formulation that has been used in various studies of singularity format
in the dynamics of vortex sheets without surface tension (see, for example [42, 104, 1
131, 172]). Without surface tension, the curvature of the sheet diverges at a finite time ar
coupled to a concentration of interfacial vorticity. This is known as the “Moore” singularit
after Moore [131].

Next, we demonstrate that the Lagrangian formulation results leads to extreme dif
ential clustering of computational points during typical simulations. This results in seve
numerical time step constraints when surface tension is present. This may be seen throt
general linear analysis given by Bealeal.[18, 19]. Linearizing around the time-dependent
inertial vortex shedf = (x(«, t), y(a, t)) with strengthy («, t), Bealeet al.find the leading
order equation for theaormal componentf a perturbation at large wavenumber:

2 1

y e
= o zallaa H aaal - 16
e = g + 253 [Maaa] (16)

Here, H is the Hilbert transform:

+00 /
H[ (@) = %P.V./ M@)o,

/
o X —

Setting Wet =0 gives the linearly ill-posed behavior of the unregularized Kelvin-
Helmholtz problem. For finitéVe this ill-posedness is regularized by a dispersion du
to caused by surface tension.

A*“frozen coefficient” analysis of Eq. (16) reveals that the least restrictive time-depends
stability constraint on a stabéxplicittime integration method is

At < C Wé’?. (5,h)¥?, wheres, = mins,; 7
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FIG.2. The evolution of log, (S,) for several Weber numbers.

see [18, 19] for details. Hedle = 1/N is the grid spacing, witiN the number of points
describingl". Since arclength spacing\s, satisfiesAs ~ s,h, Eq. (17) implies that the
stability constraint is in fact determined by th@nimumspacing inarclengthbetween
adjacent points on the grid.

For several “typical” simulations (same initial data, differing Weber numbers),the ev
lution of 5, associated with the Lagrangian formulation is shown in Fig. 2, on a base-
logarithmic scale. Over the times shové,decreases in value by a factor of*idr more.
Consequently, the time-step constraint (17) decreases by at least a factbrefeiOfor a
fixed grid sizeh. The steep drop at slightly less thias- 0.5 is the result of the compression
associated with the shadow of the Moore singularity, which occutig at 0.37 for this
initial data [104]. Such strongly time-dependent time-step constraints have severely lim
previous numerical investigations [11, 149, 151].

Once a stable spatial discretization has been obtained, the primary challenge to compi
the long time evolution of interfacial flows with surface tension lies in the construction
time integration methods with good stability properties. It is difficult to straightforwardl
construct efficient implicit time integration methods as the source of the stiffness, ihe
the y-equation, involves both a nonlinear combination of high derivatives of the interfa
position and contributes nonlocally to the motion throughtlivethe Birkhoff—Rott integral.
The approach we consider to be state-of-the-art in generating such time integration met
was first given in HLS94. It involves reformulating the equations of motion according to tl
following three stepg(A) 6 — s, formulation;(B) small-scale analysi¢C) special choices
of reference frames (tangential velocities).

(A) 6 — s, formulation. Rather than using, y as the dynamical variables, repose the
evolution in variables that are more naturally related to curvature. Motivated by the iden
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0s = k., wheref is the tangent angle to the curlg the evolution is formulated with and
S. as the independent dynamical variables. The equations of motion are then given by

Sut = Toz - eozU (18)
1 T

6 = —Uy + —0,. (19)
Sy Sy

Y= We 9, (00 /%) + 0. (T =W - 3) y/5,). (20)

Givens, ando, the position(x(«a, t), y(«, t)) is reconstructed up to a translation by direct
integration of

(Xa» Yo) = S(CO6 (e, 1)), sin(B(a, 1))), (21)

which defines the tangent angle. The integration constant is supplied by evolving the posi
at one poiniXy(t).

(B) Small-scale analysis.Reformulate the equations by explicitly separating the domi
nant terms at small spatial scales. The behavior of the equations at small scales is impo
because stability constraints (i.e., stiffness) arise from the influence of high-orderaerm:
small spatial scaledn HLS94, it is shown that at small scales the Birkhoff—Rott operato
simplifies enormously. A useful notatiof,~ g, is introduced to mean that the difference
betweenf andg is smoother tharf andg. In HLS94, it is demonstrated that

1
U(a,t) ~ EH[y](a,t). (22)

That is, at small spatial scales, the normal (physical) velocity is essentially the Hilb
transform with a variable coefficient. Now, Eq. (22) allows a rewriting of the equations
motion in a way that separates the dominant terms at small scales. We remark that t
terms determine the stability constraints. Rewriting the equations, we obtain

11/1
h= 54 (3701) +P. 23)
"= We*(i—f‘)a +Q. (24)

Here, P and Q represent “lower-order” terms at small spatial scales. This isinal-
scale decompositioAssuming thag, is given, the dominant small-scale terms are linea
in 6 andy, but also nonlocal and variable coefficient. At this point, it is possible to appl
standard implicit time integration techniques where the leading order “linear” terms ¢
discretized implicitly. However, we have not yet taken any advantage in choosing the t
gential velocityT. There are choices dof that are especially convenient in constructing
efficient time integration methods and in maintaining the accuracy of the simulations.

(C) Special choices for T.Choose the tangential velocilyto preserve dynamically a
specific parametrization, up to a time-dependent scaling. In particular, require that

1
s,(a, 1) = R(@)L(t) with / R(a) da = 1, (25)
0
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whereR(«) is a given smooth and positive function. The lenbif) evolves by

1
L) = —/ Oy U do'. (26)
JO

If the constraint (25) is satisfied it= 0, then it is also satisfied dynamically in time by
choosingT as

o o 1
T(a,t) =T(0, 1) +/ OyU da’ — / R do’ - / 6,,U do, (27)
0 0 0

where the integration constamt(0, t) is typically set to zero. This follows directly from
Egs. (18) and (26).

In HLS94/HLS97 different choices are used frand so fofT. That which is computa-
tionally most convenient iR = 1, yielding what is referred to as the uniform parametriza
tion frame because a uniform discretizatiorviis then uniformirs, i.e.,s(«, t) = aL(1).

In the uniform case, the leading-order terms of the small-scale decomposition, Egs. |
and (24), are constant coefficient in space, and implicit treatments in time of these te
are directly inverted by the Fourier transform.

Since the uniform parametrization frame keeps computational points equally space
arclength everywhere along the curve, this frame can be deficient in capturing structi
such as the blow-up in curvature that apparently occurs in the topological singular
From Eq. (25), ifR < 1 in such a region, then there is a greater relative concentration
grid points there. Accordingly, in HLS97 [82], a nontrivial mappiRgs used to cluster
computational points in regions of the curve where local refinement is needed. This yie
the variable parametrization frameThe regions where local refinement is necessary al
identified beforehand by examination of simulations using the uniform parametrizatic
The specific choice dR is given in Appendix A in HLS97. An additional class of reference
frames is also given in Appendix 2 of HLS94.

For a nontrivialR, the leading order terms in the PDEs foandy are still linear, but
are variable coefficient in space. Thus, in an implicit method, iterative methods are requ
to invert these terms to obtain the solution at the next time step. Because of the additit
expense associated with solving the linear system, the variable parametrization fran
used in HLS97 only when it is crucial to obtain extra accuracy, such as at late times
the regions where (topological) singularities occur. As we will see in the next section, 1
expense of inverting the linear system, typicallyN In N) per time step, is much less than
the cost associated with an implicit treatment of the full system, whi€(¥?) per time
step, due to the cost associated with evaluating the Birkhoff-Rott integral.

The use of the uniform or variable parametrization frames alone, withoatyeefor-
mulation and an implicit treatment of the equations of motion, does in fact prgyéam
becoming small, as, now scales with the overall length ©f. This removes the strong
time dependency in time-step restriction (17). However, tHe&der constraint relating
the time-step to the spatial grid size still remains. By usingdthes, reformulation and
the implicit treatment of the leading order terms, this higher-order constraint is removec
well, typically leaving only a first-order Courant—Friedrichs—Lewy (CFL) type constrair
from advection terms, appearing in both thandy equations, that are hidden ihandQ.

Comment. The use of intrinisic coordinates to compute or simplify the dynamics ¢
interfaces driven by their geometry has a long history. Examples include Whitham in
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early work on shock propagation [212]; Browetr al. in work on geometrical models of
interface evolution [29]. Strain in work on unstable solidification [181]; Schwendeman
work on thermally driven motion of grain domain boundaries in crystallized solids [171
Goldsteinet al.in work on the elastic, overdamped dynamics of polymers [65, 71]; HO
et al.in work on the inertial dynamics of filaments [80]; and Shelley and Ueda [175, 17
in work on dynamics arising in phase transitions of smectic-A materials.

(D) Extension to the general two-fluid cas@Vhen the interfac& separates two fluids
with different densities, the Atwood ratié,, is non-zero. This means that a Fredholm
integral equation of the second kind must be solved to obtaitue to theW, term in
Eqg. (10). It turns out, however, that the small scale decomposition (23), (24) remains va
This may be seen explicitly by rewriting Eq. (10) as

Yo, t) + K[n](e, t) = f(a, 1), (28)

whereK is the integral operator

_ s [Xe (Yl t) =y 1) = Yo (X(e, ) —X(, D) |
Klnl(a,t) = ZAp/yt(oz ) { X@. D) —x@ D do'.

(29)

Observe that the kernel has a removable singularity ata’. Thus,K is smoothing
at small spatial scales [81]. Furthdr(«, t) in Eq. (28) contains all the terms in Eq. (10),
which do not contain;. Note that of these terms, is still dominant at small spatial scales.
Since the integral operatdr+ K is invertible for|A,| < 1 [96], we may write the solution
as

n=f—K[(I+K)™1f]. (30)

Finally, sinceK is smoothing at small scaleg, ~ f ~ «,. This justifies the assertion
above. For additional details, refer to Appendix 1 of HLS94.

2.4. Temporal and Spatial Discretizations

Let us begin with the temporal discretizations described in HLS94/HLS97. The OL
(26) for L(t) is not stiff. Therefore it may be solved using an explicit method. For exampl
using the second-order Adams—Bashforth method,

At 1
LM =1"+ = / (30pU" — o tU" ) de. (31)
0

ConsequenthL is always available at then + 1)st time-step. In HLS97, a fourth-order
method is also used to solve this ODE.

Next, consider the second-order Crank—Nicholson time discretization of Egs. (23) ¢
(24) in the uniform parametrization frame. The equations are discretized in Fourier spe
Let #"(k) denote the Fourier transform 6fat wavenumbek and at timet, = nAt. Let
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7" (k) denote the analogous quantity. Then

an+1y _ gn—1 2 2 B
"1k — 0" (k) =|k|l( zn > ?"“+( - > P PO (32)

2At 4 Ln+1 Ln-1
PO PR K[ 2 sy 21 a0a]
AL = “owe L”+19 + |_n—19 + Q"(k), (33)
where we have used that = —isgnk). The update$"+! and "+ can then be found

explicitly by inverting a 2x 2 matrix. For details, see HLS94.
In HLS97, a 4th-order accurate, implicit, multistep method due to Asehat. [8] is
also used to discretize in time both the uniform and variable parametrization formulatio

Using this method, Egs. (23) and (24) may be reduced to the following single equation
9n+l,

1 [/12\? 1 o+l
n+1,nn+1 2 _
Sa 9 (C() —_ 27V\/e <25) At (SS‘HLH |:Sg+1:|a)a = N(a), (34)

whereN («) is a known quantity that depends on the solutions at the previous time steps
the uniform parametrization cagt¥;* is obtained explicitly by solving Eq. (34) in Fourier
space since there the equation is diagonal. In the variable parametrization case, the dis
system is symmetric positive definite and is solved in physical space using the prec
ditioned conjugate gradient method. The applicatiofiaf performed in Fourier space,
however, so that each step of the iteration requidésl In N) operations. The precondi-
tioning operatoM is given by

2
M (9n+1) — Snaxel’l+l _ 1 <12> AtZH [Oor[lJrl]

35
2sminWe\ 25 (35)

aa’

wheresmin = min, s’ andsyax = max, s'1. Thus,M is constant coefficient and is di-
agonalized by the Fourier transform. For details, we refer the reader to Appendix B
HLS97.

In HLS94 and HLS97, spectrally accurate spatial discretizations are used in both
uniform and variable parametrization frames. Any differentiation, partial integration,
Hilbert transform is found at the mesh points by using the discrete Fourier transform
spectrally accurate alternate-point discretization [172, 178] is used to compute the velc
of the interface from Eqg. (8), i.e.,

h Xi =X+
U = — E Yico—o 5 (36)
T i Zhodd IXi = X2

whereu; = u(ej) ande; = ih. The other variables in Eqg. (36) are defined analogousl
Finally, as noted in HLS94, time-stepping methods for vortex sheets suffer from alias
instabilities since they are not naturally damping at the highest modes. The instabilit
controlled by using Fourier filtering to damp the highest modes and Krasny filtering [1C
to remove round-off error effects; this determines the overall accuracy of the method,
gives a formal accuracy @ (h'®). An infinite-order filter could also have been used.
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Empirically, it is found that the time stepping routines discussed above remove the h
order time step constraints due to surface tension and suffer only from a first order CFL i
step restriction. In fact, the stability and convergence of these boundary integral methods
only recently been proved in the semidiscrete case in which time is continuous. For exam
Bealeetal.(BHL96) [19] proved convergence of a class of boundary integral methods, usi
a slightly different formulation (based on the velocity potential and Bernoulli's equatiol
than that described previously, in the context of water waves. Ceniceros and Hou (CH
[33] later proved convergence of a class of methods analogous to those described ir
case of interfacial flows between two liquids. An important feature of the BHL96 ar
CH98 stability analyses is that a certain compatibility between the choice of quadrat
rule for the velocity integral (8) and the choice of spatial derivative must be satisfied
the discrete level to achieve numerical stability. This compatibility relation is subtle al
ensures that a delicate balance of terms that holds on the continuous level is preserve
the discrete level. This balance is crucial for maintaining numerical stability and is one
the reasons why many previous investigations suffered from numerical instability. Usi
linear stability analysis near equilibrium interfaces, BN98 [11] independently also not
and removed instability due to the incompatibility of the operators.

While the BN98 results, and the spectrally accurate method described, satisfy the com
ibility relation, most straightforward implementations of the boundary integral equatiol
do not. The compatibility condition is described most easily in the case of water wa\
without surface tension. In this case, the compatibility relation boils down to satisfying

An(f)j = HnDn(f);, (37)

for all discrete functiond;, whereAy, is the discretization of
1 f — f(a
1 / () — f(a) do’.

T (o —a)?

which is related to the first variation of the velocity integral (B), is the discretization
of the Hilbert transform using the same quadrature method as usefl,foby, is the
discrete derivative operator. Using alternate point quadrature to evaluate the velocity,
only compatible spatial discretization s, the spectral derivative with thid /2 mode set
to zero. However, one may introduce appropriate Fourier filtering in the approximation
the velocity integral so that a version of Eq. (37) holds for all choiceBipfDoing this
appropriately, one obtains

An(f?)j = HnDn(f)j, (38)

wheref” (k) = p(kh) f (k) andp is defined byDy, = ikp(kh). In the case of surface tension
and two liquids, additional filtering must be used to maintain compatibility for arbitrar
derivatives; alternate point quadrature and the spectral derivative are always compat
We refer the reader to BHL96 and CH98 for further details.

2.5. The Kelvin—Helmholtz Instability, Surface Tension, and Singularities

An interface separating two immiscible fluids is susceptible to the Kelvin—-Helmhol
instability when shear develops across that interface. This is a fundamental instability
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FIG. 3. Growing fingers of interpenetrating fluid fo¥e= 16.67 and 20. Three spatial periods are shown at
each time.

fluid mixing, such as that required to produce emulsions. Here, we study this problem ir
simplest form and consider an interface separating two density-matched, inviscid fluid:
Fixing the initial data, the Weber numbéfealone controls the dynamics. For very small
We the flow is dominated by surface tension effects, and linear theory gives no instabil
predicting only oscillation. And indeed, the simulations in HLS97 show only an oscillato
dynamics well-described by linear theory, even over very long times. The dynamics beco
successively more interesting as the Weber number is increased, and the flow becomes
dominated by inertial effects, and hence, the Kelvin—Helmholtz instability. Figure 3 sho
the evolution from single-mode initial data, for two intermediate value¥/efit which
only thek = 1 mode is linearly unstable. The nonlinear outcome of the linear instabili
is fascinating: The interface elongates into long spikes and the two fluids interpenetr
Our simulations suggest that this process can continue indefinitely, with the interface ler
eventually growing at a linear rate, with the finger width thinning exponentially\ag
increased and the number of linearly unstable modes increases, inertial effects bec
dominating. Figure 4 shows the simulation of evolution for single-mode data (the sa
as above) foe= 200, for which there are 16 linearly unstable modes. The large-scc
spiral structure resembles what one expects from the development of the Kelvin—Helmh
instability, based on the zero-surface tension simulations of Krasny [103] using vortex blc
There are two crucial points to make. First, with zero surface tension these initial d
(see [104]) produce a Moore singularity at the center of the sheet approximately at t
t = 0.375. At large, but finitéVethe shadow of this singularity is seen as short-wavelengt
dispersive waves erupting from the center of the developing spiral, and propagating
wards. Thus, surface tension disperses the Moore singularity in a manner reminscent o
dispersion of near-shocks in the KdV equation. The second point is that while a Moore-t
singularity is avoided, the roll-up does not proceed smoothly onwards. As the latter sta
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FIG.4. Thelong-time evolution from a nearly flat sheet¥e= 200. The bottom right box shows a close-up
of the thinning neck at = 1.4.

of our simulation show, the roll-up appears to be terminated by the collision of interfac
within the interior of the spiral, that is, the smooth dynamics is punctuated by a collisic
in finite time, of the sheet with itself in the inner turns of the spiral.

As is well known, a collision of material interfaces in a flow implies the divergence c
velocity gradients (see, e.g., HLS97). We refer to this collisiontapalogical singularity
since such collisions must precede a reconfiguration of fluid interfaces in a multiphs
flow (as in the pinch-off of a droplet). In HLS97, locally refined grids and high-order time
stepping are used, together with an SSD formulation, to very carefully isolate this oncom
topological singularity, and to study its analytical structure. This study reveals the followir
As the spiral forms and disparate sections of the interface come in proximity to one anot
a jet begins to form and intensify, fluxing fluid into the inner core of the spiral. This jet |
associatedi) with the thin neck shown in close-up in Fig. 4f, ang (vith the formation
of oppositely signed sheet strengths (or interfacial vorticity) on the opposing sides of t
neck. This creation of oppositely signed sheet strength is a direct consequence of sul
tension as in its absence the sheet strength is conserved in the Lagrangian frame, an
initial data have sheet strength of a single sign. That the thickness of this neck falls to z
in a finite time is demonstrated in Fig. 5 (upper), which shows the neck width as a funct
of time.

The oncoming singularity bears some signs of self-similarity. Expectations of se
similarity would suggest that

Neck Width~ (t, —t)?,

wheret, is the singularity time (its estimate is shown as the vertical dashed line in Fig.
(upper)), andy = 2/3 the similarity exponent [95]. We find that the collapse follows this
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FIG.5. The top figure shows the collapse of the neck width in time. In the bottom figure, the left box show:
close-up of the upper pinching region of the rolled-up sheet at time4.4135 (dashed) and 1.427 (solid), both
very near to the collapse time. The right box magnifies this close-up by another factor of 10.

Ansatz quite closely. Our simulations suggest that hotind the interfacial curvature
are diverging as the collapse time is approached. However, we did not find that the rat
divergence was well fit by self-similarity{ = —1/3 for y and—2/3 for «). We did find
strong evidence that the opposing interfaces were forming corners as the critical time
approached, which is also predicted by expectations of self-similarity. The lower part
Fig. 5 shows the successive blow-ups of the neck region as the singularity is approac
making the onset of a corner rather convincing.

Figure 6 shows the evolution of the vortex sheet from more complicated, multimo
initial data. This reveals that dynamics from more general initial data is composed ©
combination of finger structures, as seen in Fig. 3, and spirals and pinches, as see
Fig. 4. In HLS97, many more details are found concerning the simulations. These incli
numerical resolution studies, and further detail on the nature of the singularity, such
its behavior in the zero surface tension limit. On the latter, our results suggest that be
the Moore singularity time of zero surface tension flow, surface tension acts as a reg
perturbation.

We have also attempted to abstract from our simulations the basic phenomena under|
the pinching singularity, which is the collapse of a jet between interfaces under surf:
tension. Figure 7 shows the direct collapse of a jet, with no intervening roll-up, betwe
two interfaces under surface tension. The initial data was chosen so that dnbgthenode
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FIG. 6. The development of the Kelvin-Helmholtz instabilitty¢= 200) shown over two spatial periods,
for various initial data. (a): The initial data are in tke= 1 and 3 modes, each with a randomly chosen phase
(b) and (c): The initial data are in the first 30 modes, with randomly chosen initial amplitudes and phases.

was unstable, in crude analogy to the length-scale selection seen in the full simulatic
The collapse of such jets is studied further, analytically and numerically, within long-wa
approximations, by Pugh and Shelley [148].

2.6. The Rayleigh—Taylor Instability and Surface Tension

Another classical hydrodynamic instability is the Rayleigh—Taylor instability (see, e.c
[55] for a general reference), which occurs when a layer of heavy fluid sits on top of a ligh
fluid. Such a situation may arise, for example, when a stably stratified multicomponent fl
system is subjected to a destabilizing temperature gradient (or turned upside down).

Here, we consider again the simplest model: a single interface that separates two invic
immiscible fluids of different densities. In HLS94, the nonlinear evolution of such a dividin

0.5 T T .
——:T=0; (a) symm i.c
solid’ T=1.3
0 L 4
-0.5 : : :
-0.5 0 0.5 1 1.5

FIG.7. The collapse of a jet between two interfaces under surface tension. The dashed curves show the i
position.
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FIG. 8. Unstably stratified flowA = —0.1 andS = 0.005. Sequence of interface positiofs= 2048 and
At = 1.25 x 10~*. Graph courtesy of Ceniceros and Hou [33].

interface for unstably stratified fluids is simulated using the Boussinesq approximation
that approximation, the density variation is taken only in the gravitational term. Its evoluti
showed the development of the classical Rayleigh—Taylor plume, with a developing lo
Kelvin—Helmholtz spiral. As for the Kelvin—Helmholtz instability discussed in the previou
subsection, it appeared that its evolution was terminated by a collision within the turns
the spiral (Fig. 18 of HLS94). This problem has since been studied more comprehensi
by Ceniceros and Hou [33] (CH98).

CH98 investigated several examples of two-fluid interfacial flows in the presence
surface tension. Of particular interest are their high resolution numerical simulations
evolving, unstably stratified two-fluid interfacial flows, as shown in Fig. 8. This simulatiol
We= 200,A, = —0.1, andFr~! = 2.0, was done using an SSD approach with the uniforn
parameterization frame. Féx, > —1 and without surface tension, the interface is knowr
to develop a curvature singularity due to the Rayleigh—Taylor instability at an early time
version of the Moore singularity, see [13]). Surface tension regularizes the Moore singula
and allows a smooth solution to exist beyond this early singularity time. Byttisa®.9,
two small fingers appear in the interface, and the interface begins to roll up. One can
see some capillary waves that are generated arbend.2 and move outwards from the
centers of roll-up. The finger tips broaden as they continue to roll up, and the interface be
toward the finger tips. This again is very much like the topological singularity formatic
seen in the Kelvin—Helmholtz case. As in that case, the minimum distance between
finger tip and the opposite side of the interface approaches to zero. Although CH98 did
use a variable parameterization frame for better resolution of the singularity, they fol
good agreement with th&. — t)%3 asymptotic form of the Neck Width obtained in HLS97.

The study of CH98 seems to indicate that the topological singularity observed in HLS'
HLS97 for a vortex sheet with surface tension is quite generic. In addition, a recent sti
by Tryggvason and Unverdi (TU98) [196] provides further evidence of the genericity. F
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example, TU98 report that interfaces between two immiscible fluids, with small but fini
viscosities, exhibit structures under shear and buoyancy similar to those of their invis
counterparts described here and in HLS94, HLS97, and CH98.

2.7. Dynamic Generation of Capillary Waves

Afamiliar example of interfacial flows which are not driven by a hydrodynamic instabilit
is the motion of water waves. Water waves are the source of many interesting nonlin
phenomena such as wave-breaking and the dynamical generation of capillary waves o
forward wave front [57, 59, 142]. These capillary waves typically appear near the cr
of the main wave where the local curvature is very large and surface tension becol
important. The understanding of these short waves is important in the remote sensing o
surface because the fine structure associated with short wavelengths scatters electroma
radiation. Capillary waves are also believed to be a mechanism for extracting energy fi
wind-generated waves and may be significant in wave breaking [57, 59].

There have been many thorough studies of capillary waves generated by steady <
gravity waves (see, e.g., [44, 118, 119] and the references cited there). For unsteady cap
waves, Tulin [199] has performed a careful numerical study on the effects of surface ten:
on breaking waves. Tulin’s simulations show the appearance of a capillary jump, as defi
by Longuet-Higgins [119], near the wave crest. More detailed structure of capillary way
has been revealed recently by Ceniceros and Hou (CH99a) [34]. Using the method:
HLS94/HLS97, they are able not only to compute with high accuracy up to the appeara
of the capillary jump as observed by Tulin, but also to follow the subsequent developm
of small-scale structures.

An example of this type of behavior is seen in Figs. 9 and 10. In this simulaties; 10°,
Fr—1 = —20, and an initial shear is imposed to give the wave the impulse to overturn. O

t=0.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1=0.30

t=0.45

0.2 04 0.6 0.8 1

FIG.9. The approach to breaking for a wave with surface tension. Wave profiles shown at tir®<0.30,
and 0.45, using\ = 2048 andAt = 5 x 10°°. Graph courtesy of Ceniceros and Hou [34].
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FIG. 10. (a) A close-up of the interface at= 0.45 and (b) the interfacial curvature plotted against the
Lagrangian parametet. Graph courtesy of Ceniceros and Hou [34].

can see that the interface becomes vertical-at0.30 and a capillary wave appears soon
after the wave begins to overturn. Figure 10a gives a close-up of a neighborhood of the ¢
at timet = 0.45. The curvature in this region is plotted in Fig. 10b, in which a capillar
wave train can be clearly seen. By a close inspection of the onset of this capillary wi
att = 0.26, the curvature is seen to develop a spike right behind the wave tip. Howe\
such a spike is not present in the corresponding zero-surface-tension solution, for wi
curvature varies smoothly in the entire region [34]. Soon after, this spike develops i
the capillary wave train. Note also that the capillary intrusion gets narrower in time (s
Fig. 10a), suggesting that a small gas bubble will soon be pinched off and trapped wit
the fluid.

A useful quantity to consider is the so-called capillary wavelengih defined as the
distance between the two largest valuegdf Although it is difficult to obtain an accurate
scaling foriwe the CH99a study suggests that for a fixed time, both the capillary waveleng
and its amplitude decrease nonlinearlyVes* decreases to zero. The scaling fqye is
roughly O(We %/?). This seems to be in agreement with the experimental results of Dunc
et al. [57]. Moreover, for these data, CH99a find that the interface profiles with decreas
surface tensions converge to the zero-surface-tension profile at the fixad-ind5. This
is not surprising since the limiting zero-surface-tension water wave problem is well pos
even after the wave overturns [213]. Here surface tension acts as a regular perturba
However, this conclusion does not apply to the ill-posed Hele-Shaw problem, as we \
see in Section 3.

3. HELE-SHAW FLOWS

Hele-Shaw flow is the quasi-two-dimensional flow of a viscous fluid between two close
spaced plates—the so-called Hele-Shaw cell [77]. Driven multifluid flows in the Hel
Shaw cell have been intensely studied, both experimentally and theoretically, becaus
nonlinear development of the Saffman—Taylor (S—T) instability [165] can lead to prototy
“densely branched” patterns and is one of a class of pattern-forming systems that inclt
crystal growth, electrodeposition, bacterial growth, and directional solidification. A rece
review of the many experimental perturbations of Hele-Shaw flow is given by McClot
and Maher [124]. Hele-Shaw flows also give a relatively simple and well-characteriz
setting in which to study the effects (often subtle) of surface tension on the developmer
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singularities, on pattern selection, and as a physical regularization of an ill-posed syst
(Like the Kelvin—Helmholtz system, Hele-Shaw flows can have linear growth rates that sc
linearly with wavenumber.) A much better theoretical understanding of these problems
followed from analysis, guided or validated by highly accurate and efficient simulations.
recent review of the role of surface tension in Hele-Shaw flows is given by Tanveer [185]
comprehensive bibliography on Hele-Shaw and Stokes flows has been compiled by Gil
and Howison [63].

The usual starting point for theoretical investigations of Hele-Shaw flows is Darcy'’s la
Consider two incompressible, viscous, and immiscible fluids in a Hele-Shaw cell, separe
by a planar interfac€. As before, letj = 1 or 2 label the two fluids. In a Hele-Shaw cell,
the (gap-averaged) velocity of each fluif) (s given by Darcy’s law, together with the
incompressibility constraint

b2
uj(x, y)=—ﬁ(ij(x, y) — piF(X,y)), V-u; =0, (39)
]

whereb is the cell gap widthy; the fluid viscosity,p; its density, andF = —V® is

a body force (usually divergence-free, e.g., gravitational). Boundary conditions typica
used are the kinematic and dynamic boundary conditions as given in Egs. (2) and

These are augmented by far-field boundary conditions on the velocity or pressure. Tal
the divergence of Eqg. (39) shows thais harmonic, which is the basis from which most
numerical treatments proceed.

3.1. Historical Perspective

Many different numerical approaches have been applied to simulating Hele-Shaw flo
These include volume-of-fluid methods (e.g., [100, 210]), boundary element methods (e
[75]), level set and immersed boundary methods [86], and statistical methods basec
diffusion-limited aggregation (e.g., [7, 116]). Methods based on conformal mapping he
long been used to study dynamics of Hele-Shaw flows (see [23, 45, 185] for reviews :
references). However, conformal mapping methods apply most naturally to singly connec
domains, and can have difficulties with efficiently including the effect of surface tensio
As a numerical method, the most sophisticated version of conformal mapping seems
due to Bakeet al.[12], who solve a well-posed evolution problem for zero surface tensio
by analytically continuing initial data and equations of motion into the complex plane, a
explicitly tracking the solution’s poles and other singularities.

Due to their natural applicability, flexibility, and potential for high accuracy, boundar
integral methods have developed into a powerful method for simulating Hele-Shaw flo
Their first application to study dynamics seems to be due to Tryggvason and Aref [1
195], who in a highly ambitious work studied two-fluid mixing via a Rayleigh—Taylor in-
stability and the interaction of S—T fingers. Posing the interfacial velocity in terms of
vortex sheet, they gave an integral equation of the 2nd kind for its strengthsentially
of the form in Eq. (28) (which is foft). The integral equation was solved via iteration
(similarly to [14] for inviscid waves), coupled to a vortex-in-cell (VIC) approach for the
rapid evaluation of the Birkhoff—Rott integral. In studying mixing, they were able to achie\
considerable ramification of the interface, though this was likely aided by the smoothi
of VIC methods. This work was soon followed by Davidson [47, 48] and DeGregor
and Schwartz [50-52]. Davidson [47] posed a boundary integral representation, and us
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subsequently [48] to study the development of S—T fingers to modest amplitude. DeGreg
and Schwartz studied various aspects of tip-splitting and the stability of S—T fingers. Tt
boundary integral approach was coupled to a grid redistribution strategy that kept c
putational points in regions of high curvature, and used a a stiff ODE solver to redt
the stiffness from surface tension. Meiburg and Homsy [127] employed a vortex sheet
scription, with the interface discretized as circular arcs, to study aspects of splitting :
finger instability. Following Daiet al. [45], who used conformal mapping methods, Dai
and Shelley [46] applied boundary integral methods (discretized to infinite order) to stt
regularization of Hele-Shaw flows by surface tension, and also the interaction of surf
tension and noise. They partially ameliorated the stiffness of surface tension by chc
ing a dynamical frame that kept computational points almost uniformly spaced. They &
applied Krasny filtering [104], to control growth of round-off errors in their simulations
Using a vortex sheet representation, Whitaker [211] compared the effect of different spe
discretizations on simulating propagating fingers. Power [144] used a boundary integral
resentation to simulate the initial development of the S—T instability for two fluids in a radi
geometry.

3.2. The Small-Scale Decomposition for Hele-Shaw Flows

In HLS94 [81], we developed the SSD for Hele-Shaw flows (described below). Tt
efficiently subverted the stiffness due to surface tension, and as with inertial vortex she
has allowed the accurate and long-time simulation of many prototypical Hele-Shaw floy
Further, given the close analogy of Hele-Shaw flow to solidification models in materi
science, much of the numerical technique is immediately applicable there (see next sect

That the velocity field has the form given in Eq. (5) follows from Darcy’s law (39
(which implies that the velocity; is irrotational), the incompressibility constraint, and
the kinematic and dynamic boundary conditions. An equation/féollows from these,
together with the Laplace—Young condition; see [194] or [46] for details. In nondimensior
variables,y satisfies

y = —2A,W -8+ S¢, + RF -8 (40)

Here, A, = (u1 — n2)/ (1 + p2) is the Atwood ratio of the viscositie§ is a nondimen-
sional surface tension, aritlis a signed measure of density stratificatipn & o, implies
R < 0). Due to the presence fin the velocityW, Eq. (40) is a Fredholm integral equation
of the second kind foy, and is, in general, uniquely solvable (see [14]).

For Hele-Shaw flows, the effect of surface tension is dissipative at small scales and g
a higher order time-step constraint than for inertial flows. Again using a “frozen coefficier
analysis of the equations of motion, Bealeal.[21] showed that least restrictive stability
time-step bound on an explicit integration scheme was the time-dependent constraint

At < C - (5h)?%/S, (41)

wheres, = min, s,. Thisis amuch stricter constraint than that for the inertial case (Eq. (39
Again, the stability constraint is determined by the minimum grid spacing in arclength
perhaps strongly and adversely time-dependent—but the bound in tespis afso quadrat-
ically smaller. The lack of robust and efficient methods for subverting such constraints |
severely limited simulations of Hele-Shaw and related flows.
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For the Hele-Shaw case, in HLS94 the small-scale analysis shows that the equatior
motion can be given in the form

S1/1 On
9{ = Eg <SaH |:Sa:|a>a + N(a,t), (42)

where, as in Eqg. (23), the term dominant at small length-scales is separated ohitjgand
the remaining, lower-order, terms.

The majority of simulations of Hele-Shaw flow have uded= 1, which removes the
variable coefficient nature of Eq. (42). Thus, Eq. (42) simplifies to

S/2n\?3
6 = 2<L) H{Bua] + N(@). 43)

Equation (43) is posed together with Eg. (26), the ODE for evolingnd is a complete
specification of the interfacial problem, with the highest order, linear behavior prominen
displayed. This term is now diagonalizable by the Fourier transform, and so

. S/27\% .. -
et(k>=—2<f) K129 (k) + N (k). (44)

Implicit time integration methods can now be easily applied. As an example, consic
linear propagator methods, which factor out the leading order linear term prior to d
cretization. They usually provide stable, even high-order, methods for integrating diffus
problems. The first use of such a method (of which the authors are aware) was by Rog
[157] in simulations of the Navier—Stokes equations, though it has been rediscovered
used by several researchers in different contexts. For Hele-Shaw, Eq. (44) is rewritten

0 . S 3 t / R
atx/x(k,o—exp(z(zmkn / L3(t/)>N(k’t)’ (45)
where
_ S 3 ! dt’ A
w(k,t)—exp<2<2n|k|> / L3(t/))0(k’t)' (46)

Equation (45) follows from Eq. (44) by finding an integrating factor to incorporate the line
term into the time derivative. It is now Eq. (45) that is discretized using the second-or«
Adams—Bashforth method. In termséfthe result is

~ ~ At o A
0" (K) = &(tn, th42)6"(K) + 7(3@(%, tns1)N"(K) — &(th-1, ta )N (K)),  (47)

wheret, = nAt, and

to t
&y, tp) = EXP<—— (2 |k / Lg p ) (48)

y L)
The use of “linear propagator” is now clearat thenth time-step is propagated forward
to the (n 4 1)st time-step at the exact exponential rate associated with the linear term
N = 0, this yields theexactsolution to the linear problem. Of course, the faatds, t)
still has a continuous time dependence through the presence of integrals. These inte
are evaluated by evolving auxiliary ODEs for the integrand, and_foy. Clearly, linear
propagator methods can be formulated with high-order methods.
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FIG. 11. The evolution of an expanding gas bubble in a Hele-Shaw cell.

3.3. Pattern Formation

Hele-Shaw flows can give rise to the formation of beautiful patterns—this is one asp
of the physicist’s and mathematician’s interest in them. In this section, we briefly disct
several scenarios and simulations of pattern formation.

From HLS94, Fig. 11 shows the simulation of a gas bubble expanding outwards int
Hele-Shaw fluid (see [45, 46]) over long times. From the competition of surface tensi
with the fluid pumping, this simulation shows the development of ramification throuc
successive tip-splitting events—the S—T instability—and the competition between adjac
fingers. This simulation is also spectrally accurate (infinite order) in space, and uses asec
order in time linear propagator method to integrate the small-scale decomposition. Tt
are no high-order time-step constraints. The fluid velocity is evaluated from the discreti.
Birkhoff—Rott integral inO(N) operations using the Fast Multipole Method of Greengart
and Rokhlin [74]. The integral equation fer(arising from the viscosity contrast) is solved
via the iterative linear system solver GMRES, using an SSD-based preconditioner [163,
The operation count i®(N) at each time-step, wheht is the number of points describing
the boundary. Her&l = 4096 andAt = 0.001. This time step is fimes larger than that
used by Dai and Shelley [46] in computations of a similar flow using an explicit meth
with a lesser number of points, and the interface here has developed far more structur

A very different manifestation of the S—T instability and pattern formation is seen
Fig. 12. This simulation, due to Shelley al. (see [174]) and using SSD-based methods
shows the atypical patterns that can form at the liquid/gas interface that bounds a blo
viscous fluid, as the upper plate of a Hele-Shaw cell is lifted. This lifting puts the fluid blc
under a lateral straining flow, sucking in the interface and causing it to buckle. This ba
mechanism, though coupled to a much different material rheology, is likely responsible
producing the permanent patterns left behind after some adhesive tapes are pulled up
resulting short-lived patterns can resemble a network of connections with triple junctio
A likewise odd pattern formation is seen in Fig. 13, from Lowengrub and Shelley (19¢
unpublished), which shows the nonlinear development of the S—T instability on a liqt
bubble in a spinning Hele-Shaw cell (see [32] for related experiments). Here the cen
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FIG. 12. The evolution of a contracting fluid blob as the cell gap-width is increased in time. Graph courte
of Shelleyet al.[174].

bubble throws out attached droplets of fluid, which then themselves become susceptib
the S—T instability, throwing out fingers which will perhaps themselves form new drople
Such flows are relevant to the manufacturing process of spin coating, where it is of inte|
to control such instabilities.

In a set of beautiful simulations that sought to establish a concrete connection betw
Hele-Shaw flows and dendritic solidification, Aimgretral.[4] (ADH) used an SSD formu-
lation to compute the long-time growth of “dendrites” in a Hele-Shaw flow with anisotropi
surface tension. Figure 14 shows a sample simulation from this work. As in the simulat
from HLS94 described above, this shows an expanding gas bubble, but with the pres

t=0 1=0.375
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FIG. 13. The centrifugal instability of a liquid bubble in a
Lowengrub and Shelley (unpublished).
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FIG. 14. Pattern formation in an anisotropic Hele-Shaw cell. Graph courtesy of Alnegran[4].

boundary conditiorp = dy(1 — € cosm®)«, where® is the azimuthal angle and an inte-
ger (m = 4 in the figure). (In their numerical implementation of the SSD, the “small-scale
terms use only the mean surface tenglgrwhich at large anisotropiessomewhat reduces
the effectiveness of the method.) Now one sees the suppression of tip-splitting, and the
mation of a densely branched pattern, replaced by “dendrites” traveling along direction:
least surface tension, and shedding side-branches. Through their simulations and ana
ADH established that the emerging finger displayed a simple temporal scaling, which
lead to new experimental and theoretical work in solidification and Hele-Shaw flows (s
e.g., [89, 146]).

Finally, we close this section with the remark that even though the SSD analysis ari
from the boundary integral representation, its application is not bound to it. Figure 15 shc

-2

FIG. 15. Left box: A simulation of the development of the S—I instability for a slightly shear-thinning fluid
Right box: A closeup of the overset grids used in the simulation, where the body-fitted grid is coupled to
Cartesian background grid. Graph courtesy of Fast and Shelley [62].
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a simulation by Fast and Shelley [60, 62] of the nonlinear development of the Saffme
Taylor instability for a weakly “shear-thinning” fluid. A mathematical description of &
Darcy’s law for shear-thinning fluids can be found in [60, 61, 101, 102], but suffice it 1
say that now the pressure is not harmonic and has no boundary integral representatiol
advance the interface the pressure must be found in the entire fluid domain at each ti
step. Fast and Shelley apply overset grid methods, based on the Overture framework |
where the domain away from the interface is discretized by a fixed grid, and that near
interface by a narrow conforming grid. This avoids the difficulties of global grid generatio
and minimizes grid anisotropy errors. An SSD formulation is used to control, again, t
stiffness induced by surface tension. This simulation illustrates how shear-thinning lead
a relative suppression of the tip-splitting that underlies the densely branched morphol
of Newtonian patterns (see also [102, 143] and the references therein).

3.4. Singularity Formation

In this section, we will review several recent applications of boundary integral metho
to study the formation of singularities in Hele-Shaw flows. Singularity formation for Hele
Shaw flows without surface tension is practically generic. The modification or generati
of singularities by the presence of surface tension is much less well understood. In w
seems to be the first such result, Duchon and Robert [56] proved the short-time existe
of a linearly unstable Hele-Shaw flow with surface tension (for a flow with suction from
mass sink). A long-time existence result has been obtained by Constantin and Pugh [41
the linearly stable case of a near circular blob of fluid (with no suction). Recent simulatiol
work has considered the formation of topological singularities (i.e., interfacial self-collisio
and the collision of an interface with a mass sink.

3.4.1. Topological Singularities

Topological transitions in fluid systems are poorly understood, and Hele-Shaw flo
provide a simple, but nontrivial, situation in which to study them. The majority of studie
concern analytical and numerical studies of simplified “lubrication,” or long-wave, descri
tions of Hele-Shaw flows, which yield nonlinear, but local, PDEs for the layer thickne
(e.g., see [3, 24, 25, 39, 58, 6770, 173]. Two studies that have sought to study topolog
singularities in the full Hele-Shaw problem are Shekal.[173] and Almgren [2]; both
applied boundary integral methods.

Shelleyet al.[173] give an initial study of topological singularity formation in Hele-Shaw
flows, where a thin fluid layer is being driven to rupture by a Rayleigh—Taylor instabilit
In this study, they develop a lubrication reduction from a long-wave expansion of t
boundary integral description, and perform simulations that compare the approximate
full systems (see Goldstegt al. [67—70] for subsequent analytical and numerical studie
of the associated lubrication PDE). For the full Hele-Shaw flow, Fig. 16 shows a simulati
of the collapse of a thin fluid layer. Rising “spikes” of light fluid are accompanied by fallin
spikes of heavy fluid. The latter appears to collide at a finite time with the bottom w:
(which can also be interpreted as collision with an interface rising from below as sugges
in the lower figure). This again is a topological singularity, which necessarily is associa
with a divergence, at the least, of flow velocity gradients. These simulations, and th
of the associated lubrication PDE, suggested a divergeneg the interfacial derivative
of curvature, withx remaining bounded. However, by using an explicit time-integratiot
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FIG. 16. The collapse of a thin fluid layer, under an unstable density stratification, in the Hele-Shaw cell. T
lower graph shows the “final” interface in a commonr- y scale. Courtesy of Shellest al. [66].

scheme these simulations employ only 129 spatial points because of the stiffness f
surface tension. And so, while the spatial accuracy was of infinite order, the resolut
was far short of that necessary to capture reliably the details of the singularity. It was 1
simulation that originally motivated the development of the small-scale decomposition.

As said above, Constantin and Pugh [41] have proven the long-time existence of sm
solutions for the Hele-Shaw flow of a blob of fluid initially close to being circular. The!
also show that a circular blob is asymptotically stable, with these solutions relaxing tc
Almgren [2] has given strong numerical evidence that their result does not hold far fre
equilibrium. He considered the evolution of singly connected blobs that initially had
dumbbell shape, with a thin flat neck of fluid connecting the two halves. His conjecture v
that in the process of the domain seeking to minimize its interfacial length—this is a cur
shortening dynamics—the neck could collapse in width, forming a flow singularity. Unlil
the problem considered above, this flow is “unforced” as there is no source of instabil
such as a density stratification or mass source, and is driven purely by the surface ter
at the boundary. To study this numerically, Aimgren employs an SSD formulation, witt
variable parameterization frame (Eq. (25)) that clusters computational points in the n
region. Rapid evaluation of the spatial interactions is done via the Fast Multipole Meth
[74], with GMRES [163] used to solve the integral equation for the vortex sheet strength. |
simulations appear to confirm his conjecture, with the apparent singularity similar to tl
suggested above by the simulations of Shed#iesl., and in agreement with the predictions
of lubrication theory.

3.4.2. Hele-Shaw Flow with Suction

Consider a blob of fluid in a Hele-Shaw cell that contains a point mass sink that remo
fluid at a constant rate. In this case, all of the fluid will be removed within a finite tim
giving an upper bound on the time of existence of the flow. The question is: Does anyth
interesting happen beforehand? For example, might the bounding interface collide with
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mass sink first, giving a singularity? For zero surface tension it has been shown that p
to the fluid being completely removed, the bounding interface can form cusps, or coll
with itself, or reach the sink, and that only a circular blob with the sink at its center do
not develop singularities [79]. For nonzero surface tension, Hovésahhave attempted a
perturbation analysis of such a flow, using knowledge of the zero-surface-tension soluti
[87]. Assuming that surface tensionis only important where curvature is large, they posit
existence of a self-similar steady-state solution (where on an inner scale surface tensi
rescaled to be order one). Their analysis predicts that small surface tension could caus
interface in the neighborhood of the cusp to propagate rapidly as a narrow jet, analogot
a thin crack. However, the existence of such a self-similar steady-state solution is unkno
and the effects of very small surface tension past the cusp singularity time remained unc
For nonzero surface tension, Tian [192] has shown that a singularity must occur if the m
sink and center of mass of the fluid domain do not coincide. The form of this singularity
not identified through his analysis.

Kelly and Hinch [97] studied numerically the effects of surface tension on a Hele-Sh:
flow with suction. Using a boundary integral method ([98]; second order in space and tir
with explicit time-stepping) they showed that the cusp of the zero surface tension solutit
was avoided. However, their simulations are limited by modest spatial resolution (200 g
points).

Nie and Tian [137] have performed a more resolved numerical study of the interfe
dynamics of a Hele-Shaw flow with suction. To reach high spatial resolutions (up
4096 points) and accuracy, they use a spectrally accurate SSD formulation, with a Cra
Nicholson time discretization. Beginning with data that for zero surface tension would fol
a finite-time cusp (away from the sink), they find that surface tension induces a collision
the interface with the sink, with the interface forming a corner at the instant of impact. Th
also provide a resolution study of their simulations in the neighborhood of the singular
and suggest that the sink is approached by the interface as a square root in time.

Cenicerost al.[36] (CHS) have provided a subsequent, yet more comprehensive stu
considering both the asymptotic behavior as surface tension tends to zero, and the effe
having an external fluid—the so-called Muskat problem. Their numerical approach is a
based on the SSD formulation coupled to 4th-order implicit and stable integration sche
[8]. Because of the ill-posedness of the zero surface tension limit, they control the spuri
growth of round-off errors using Krasny filtering [104]. They also successively double tl
number of points, up to 16,384, whenever the Nyquist frequency begins to rise above
filter level (usually 1012).

CHS have found several new and intriguing results. They consider an initially circul
blob of viscous fluid surrounded by inviscid fluid, i.é\, = 1. Figure 17 shows one such
simulation from CHS, for surface tensi@= 5 x 10>, with the interface initially a circle
with the sink displaced upwards from its center. It shows the formation of the corn
singularity as the interface collides with the sink, in agreement with Nie and Tian [137]. £
of the graphs are at times beyoidthe time of a cusp singularity for zero surface tensior
with this particular data. One can clearly see that the “finger” bulges outwards, develop
a well-defined neck before it forms a wedge. This neck appears at a height close to the
the zero-surface-tension cusp.

From the simulations of CHS, Fig. 18 illustrates the asymptotic trend of the singular
structure as surface tension is successively halved 8em8 x 1074 to S=5 x 1075,
Here the different simulations are compared by setting the tip height above the sinl
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FIG.17. The evolution of the initially circular fluid blob, fa = 5 x 10°°, past the “cusp” timé&. = 0.2842.
Times shownt = 0.2880, 02900, and ®9181.N = 16384 andAt = 2 x 1077 for the last stage of the motion.
(cf. Fig. 2 of Nie and Tian [137]). Graph courtesy of Ceniceebal.[36].

y = 0.01. This figure, and their data analysis of the corner angle, strongly suggests tha
asymptotic corner angle is selected in the limit of zero surface tension.

Other results for this class of singular flows can be found in CHS. For example, t
simulations of CHS suggest that the small surface tension solution converges strong
the zero-surface-tension solution before its cusp tymBut what happens aftér= t;, but

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
X

FIG.18. Comparison of the interface finger for a sequence of surface tensions. From the outer curve inwe
the fingers correspond to the surface tension vafiies8 x 1074, 4 x 1074, 2 x 104, 1 x 104, and 5x 1075,
Each interface is plotted when the tip of the finger reaches the fixed yexe0.01 atx = 0. N = 16384 and
At = 2 x 1077. Graph courtesy of Ceniceres al. [36].
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before the interface reaches the sink? Their simulations suggest that the limiting finger
a rounded end (it hasn't yet reached the sink), but with a neck formed by two indent
corners. The beginning of these limiting corners can be seen in Fig. 18. These results s
at odds with the predictions of the crack model of Howisbal.[87], and further details of
this comparison are found in CHS [36]. CHS also study the two-phase Hele-Shaw probl
(A, < 1),finding thatlarger viscosity in the exterior fluid prevents the formation of the nec
leads to the development of thinner fingers, and that the asymptotic wedge angle appar
decreases towards zero (becoming cusp-like) as the viscosities approach efyatpy.

It is natural to ask how the behavior of the interface would be in the corresponding 3
Darcy flow. This has been studied recently by Ceniceros and Si [37], who find the situat
very similar to that of 2-D Hele-Shaw flow (surprisingly, the azimuthal component ¢
surface tension did not appear to play a dominant role, and no “pinching” singularities w
observed).

3.5. Finger Selection and Noise Effects in Hele-Shaw Cells

As illustrated above, morphological instabilities are common to pattern formation pro
lems. The non-equilibrium growth of crystals and directional solidification are some
the best known examples. Due to the underlying Mullins—Sekerka instability, the systen
very sensitive to small perturbations and can originate convoluted interfacial patterns.
generic mechanisms in the formation of these complex patterns are present in the sin
problem of Hele-Shaw, and a fundamental question is what is the role of surface tensio
the formation of these patterns. It can be surprisingly subtle.

In the absence of surface tension, many exact analytic solutions are known for Hele-S
flows. It is natural to use the knowledge of these exact solutions to perform a perturbat
analysis around these solutions. Intuitively, one might think that so long as the zero surf
tension solution existed and was smooth, the small-surface-tension solution would conv
to it in the limit of zero surface tension. However, this intuition must confront the fact th
the zero surface flows can be ill-posed (or rather, well-posed only for analytic initial data
the space of appropriate analytic norms), and that small perturbations will generically I
to singularity.

These considerations lead Dai and Shelley [46] to numerically study whether surf:
tension acted as regular perturbation to a smooth, but unstable, zero surface tension
(see also [45]). They investigated the influence of precision and its associated rounc
errors—computing in up to 30 digits of precision—and separated those flow structures 1
seemed intrinsic to surface tension from those induced through the growth of round-
errors (see also [4] on the question of side-branching). For their initial data, they conclut
that surface tension was indeed acting as a regular perturbation.

However, the asymptotic theory of Tanveer [184, 185] and Sketgel[179] suggests that
small surface tension could be a singular perturbation for certain other initial data, eve
the limiting zero-surface-tension solution were perfectly smooth. The reason is that surf
tension, through the curvature, can introduce a new analytic structure (the so-called dauc
singularity) at = 0" which could subsequently impinge upon the physical domain by atim
finite andindependent of the surface tension. Thatis, for such initial data the limiting soluti
after a finite time would not be the zero surface tension solution. If true, this is a profou
result both for the mathematical understanding of surface tension and its effects, and fo
more general study of regularizations of ill-posed systems or systems yielding singular
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In their simulational studies, Sieget al. have given strong evidence supporting thes
analytical predictions. In part, these studies were done using a boundary integral met
with an SSD formulation for the dynamics [81], as well as conformal mapping methods
in Dai and Shelley [46], to achieve high resolution for the interfacial flow. Unfortunatel
because of the extreme sensitivity of the evolution to round-off errors, Seéegel find
it very difficult to compute for very small surface tensio®< 10~°), even if quadruple
precision (30 digits) is used.

For this class of initial data, Ceniceros and Hou [35] (CH99b) have developed a sopl
ticated numerical approach to investigate the limiting behavior for small surface tensi
Their method relies on three observations. The first is that noise can be significantly redt
by a parameterization that yields a compact representation of the solution in Fourier sp
Out of the many choices (Lagrangian, equal-arclength, etc.), it is the conformal mapg
representation that gives the most compact parameterization of the interface. This com
parameterization was used likewise by Dai and Shelley [46] and by Si¢gél[179] in
their previous studies. An advantage of using the conformal map formulation [40] is that
evaluation of the velocity integral can be done via Fast Fourier TransfofriMlog(N))
operations. Further, it allows Krasny filtering [104] to be used very effectively to separ:
noise from the physical solution for the majority of high to intermediate modes.

The second observation is that the daughter singularity, bare=ad™, is of amplitude
O(S-t) for small times. Therefore, initially it requires many digits to capture the spectr
property of this complex singularity in the physical domain. To alleviate this difficulty, the
derive a scaled equation wherein the amplitude of the daughter singulatititjsand can
then be captured more effectively.

The third observation is that one needs to perform a resolution study in the precis
and filter level, and to compute in very high precision for small surface tension (see &
Dai and Shelley [46], and Shelley [172] for related studies). At small surface tensions, v
high precision arithmetidcs used to solve numerically the scaled equation (up to 80 digit
using the multiprecision package of Bailey [9]). High precision has the additional bene
of reducing the amplitude of round-off error.

Each of these ingredients is essential to simulating the dynamics accurately at the
small surface tensions considered in CH99b (four orders of magnitude smaller than tt
used by Siegeekt al). Consequently, CH99b have provided much stronger support f
surface tension being a singular perturbation to Hele-Shaw flow. We summarize now
numerical study of CH99b. Following Sieget al. [179], they choose as initial data an
expanding bubble with three-fold symmetry (see Fig. 11 of [179]), for which the zer
surface-tension solution forms three cusp singularities &t 0.3301. According to the
asymptotic theory [179, 184], surface tension should produc®@n perturbation from
the zero-surface-tension solution around the much earlierttiree0.0463—the daughter
singularity impact time, found by solving an ODE [184]—no matter how small the surfa
tension, and even though the zero-surface-tension solution is still smdoth tat

Figures 19 and 20 show some of the results from their study.S=er10-8, Fig. 19
shows the evolution of the interfacial curvature, in the “tip” region (where the cusp wol
form for S = 0), at times neaty. Here the effect of the daughter singularity on the physica
domain can be seen. At= 0.043, the tip curvature flattens in a very localized finite region
and fromt = 0.046 onwards, the curvature develops growing deviations from the zer
surface-tension curvature, with the affected physical region near the tip spreading in ti
This behavior is consistent with the asymptotic theory, which implies that the daugh
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FIG. 19. Tip curvature forS = 1078 at early times neay = 0.0463. Graph courtesy of Ceniceros and Hou
[35].

singularity cluster will disperse once it gets sufficiently close to the unit disk. Figure 2
shows the interfacial curvaturetat 0.048, from the three simulations with surface tensions
S=10"7,10"% and 10°, as well as for the exact zero surface tension solution. The singul
nature of the zero surface tension limit can now be clearly seen. The positive surface ten
solutions deviate from the the zero-surface-tension solution, with the smaller the surf
tension the larger the deviation.
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FIG. 20. Curvature vsy/2 around one tip of the interface ait= 0.048 forS= 0, 1077, 1078, and 10°.
N = 8192. Precision level is 60 digits, with Filter level of £8. Graph courtesy of Ceniceros and Hou [35].
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FIG. 21. Close-up of the interface at= 0.0502 forS = 108. Graph courtesy of Ceniceros and Hou [35].

What is the manifestation of the daughter singularity at times beygh@€H99b have
attempted to study this by evolving the interface (S« 10-8) with accuracy for as long
as possible. The initial evolution is computed in 60-digit arithmetic. Shortly aftety,
the precision is switched to double (the Nyquist frequency had approachég),1énd
the number of points was thereafter doubled whenever the spectrum approached ui
resolution. The simulations shown in Fig. 21 ended Wite= 32,768 andAt = 10~". This
figure shows the interface in the tip regiortat 0.0502. While the interface is seemingly
nondescript, its maximum curvature curvature is 10 times its valte=a@.049, and the
“singular region” has continued to spread in time. The small indentations are associc
with these high curvatures, are very hard to resolve, and are a signature of the dauc
singularity.

Given the difficulty of computing over long times with such small surface tension
CH99b study for larger surface tensions the impact of daughter singularity on the phys
domain. Figure 22 shows a close-up of the evolution of the interface near one tip
the two surface tensionS = 1074 and S= 107°. These simulations now use the SSD
formulation withR = 1 (equal-arclength method) [81] (at these larger surface tensions t
time-step constraints for the conformal mapping approach are too severe). The symm
indentations arising from the daughter singularity have now led to a bulged bubble the
spreading outwards. As it spreads, this bubble becomes susceptible to noise-induce
splitting, and a fingering process begins on top of it (see [46]). These simulations sug
that surface tension sets a length scale for the bubble and finger widths. According tc
asymptotic theory, this length scale is related to the minimum distance from the comg
singularity to the unit disk.

4. BOUNDARY INTEGRAL METHODS IN MICROSTRUCTURE EVOLUTION

In this section, we present a review of recent applications of boundary integral method
study microstructure evolution in solid-state diffusional phase transformations in two sp
dimensions. Diffusional phase transformations occur when the temperature of a unifi
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FIG. 22. Close-ups of the Hele-Shaw interface at different timesSer 10* (t = 0.23—-Q50, with a 003
time difference between profiles) ai®l= 10-° (t = 0.05-Q09, with a 001 time difference between profiles).

Computation performed with the equal-arclength methofiFig. 11 of Siegekt al.[179].) Graph courtesy of
Ceniceros and Hou [35].

mixture of materials is lowered into a regime where the mixture becomes unstable. T
system responds by nucleating second-phase precipitates surrounded by a nearly un
matrix. See Fig. 23 for a sketch of a typical model domain.

The precipitates evolve via the long-range diffusion of matter among the distinct crys
phases until equilibrium is re-established or diffusion is stopped by further lowering
temperature. Many important structural materials such as steels and nickel and alumil
alloys are produced in this way. Microstructure, the detailed arrangement of distinct c
stituents on the microscopic level, is a critical variable that sets the macroscopic stiffne
strength and toughness of an alloy. Because of the industrial importance of diffusio

FIG. 23. A two-phase domain with three precipitatgs=£ 3).
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phase transformations, there have been many research studies to model and charac
the transformation process.

One of the central assumptions of mathematical models of diffusional phase transfor
tions is that the system evolves so as to decrease the total energy. This energy consi
an interfacial part, associated with the precipitate/matrix interfaces, and a bulk part du
the elasticity of the constituent materials. As we will see, simulating the evolution proce
involves solving both a harmonic and a biharmonic-like equation for the (quasi-stea
diffusion and elastic fields respectively. The motion of interfaces is strongly mediated
surface tension between the different phases. Consequently, many of the ideas and me
developed in the fluid dynamic context may be applied directly in this materials scier
context.

In the absence of the elastic stress, interfacial area is reduced by the diffusion of m:
from regions of high interfacial curvature to regions of low curvature. This results in t
growth of large precipitates at the expense of small ones and is known as Ostwald ripe
(coarsening) [141]. This coarsening process may severely degrade the properties o
alloy. In the early 1960s, an asymptotic theory was developed by Lifshitz and Slyos
[117] and Wagner [205] (LSW) to predict the temporal power law of precipitate grow
and a scaling behavior of the distribution of the droplet radius in the long time limit. |
the LSW theory, the average precipitate radis ~ t'/3 at long times. The LSW theory
has two major restrictions, however. First, precipitates are assumed to be circular (sphe
in 3-D) and second, the theory is valid only in the zero precipitate volume fraction lim
Extending the results of LSW to more realistic physical situations has been a subjec
intense research interest. See the reviews by Johnson and Voorhees [92] and Voorhees
202] for a collection of recent references.

Inthis section, we discuss recent research (using the boundary integral numerical met
that has been performed to investigate diffusional evolution in systems in which the
cipitate/matrix boundaries are unconstrained, the precipitate volume fraction may be fi
and elastic effects may be considered. Because of space limitations, we will focus on «
a few works which we consider to be representative of state-of-the-art research in this fi

We note that because the bulk elastic energy does not necessarily favor large precipi
over smaller ones, the coarsening process is affected most significantly by elastic stress.
is also confirmed experimentally as transitions from spherical to cuboidal to plate-sha
precipitates, alignment of precipitates along specific crystallographic directions and mere
and splitting of precipitates are all observed [6, 38, 122, 130, 193, 217]. In fact, precipit
splitting can actually lead to a decrease in average precipitate size over time. Thus, or
the goals of this line of research is to use elastic stress to control the evolution process
to achieve desirable microstructures. Consequently, here we will focus primarily on wo
which consider the effect of elasticity on the diffusional evolution.

4.1. Historical Perspective

The numerical study of coarsening using the boundary integral method with arbitra
shaped precipitates began with a study of purely quasi-steady diffusional evolution (i.e.
elastic stress) by McFaddenal.[126, 203]. Since then, other boundary integral method
for quasi-steady diffusional evolution, in the absence of elastic stress, have been devel
by Akaiwa and Meiron [1], Imaeda and Kawasaki [90], Yokoyama and Sekerka [216], a
Zhuet al.[219], among others.
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The study of elastic effects in diffusional phase transformations using the boundary
tegral method (with arbitrary precipitate shapes) began with the work of Voodiesds
(VMJ92) [204], who studied the evolution toward equilibrium of isolated precipitates in
cubic anisotropidiomogeneouslastic medium. That is, the elastic constants of the pre
cipitate and matrix are identical. More extensive simulations of microstructure evolution
homogeneous elastic media were later performed by Su and Voorhees [182, 183]and Tt
tonet al. (TAV99) [190]. In addition, Thompsoat al.(TSV94) [188] implemented a novel
boundary integral method to calculate equilibrium precipitate shapes and their stability
homogeneous media, without resorting to evolution.

The study of elastimhomogeneityn diffusional phase transformations began with the
work of Jouet al. (JLL97) [93], who studied the evolution of precipitate/matrix systems
in isotropic media. Boundary integral simulations in anisotropic, inhomogeneous elas
media were first performed by Schmidt and Gross [168] and Schehialt [169]. These
authors studied equilibrium precipitate shapes and their stability using a method analoc
to that used by TSV94 in the homogeneous case (i.e., no time evolution). Latext ko
(LLNOO) [112] developed a boundary integral method to study diffusional evolution i
anisotropic, inhomogeneous media.

Before we turn to a discussion of specific work, we comment that microstructure evoluti
in diffusional phase transformations has also been studied using other numerical approax
in both two and three dimensions, such as phase-field modeling (e.g., [99, 110, 114, :
125, 140, 162, 186, 206—208] among others) and discrete atom methods (e.g., [107-1
Further, in 3 space dimensions, there has been very recent research on diffusional evoll
in homogeneous and inhomogeneous elastic media by Thompson and Voorhees [187
Mueller and Gross [133], respectively, using boundary integral methods.

4.2. The Model

The model of microstructural evolution we review here consists of diffusionally growin
arbitrarily shaped precipitat&®', wherei = 1, ... p and p is the total number of precip-
itates, in an elastically stressed matft¥'. The matrix domair2™ may be finite, infinite
or periodically arranged in the plane with the latter two being the most popular choici
We will consider infinite2™ and we refer the reader to [72, 133, 168, 169] for discussion
of the periodic cases. Further, the equations we present are nondimensional and we us
notation and nondimensionalization of LLNOO.

Diffusion of a composition field is assumed to occur in the matrix phase only and i
taken to be quasi-steady:

Ac=0 in QM. (49)

The precipitate/matrix interfaceg;, are assumed to be coherent, and upon which a gene
alized Gibbs—Thomson boundary condition is given,

c=cr=(t+1)k+2¢ on I, (50)
wheret = 7(0) is the anisotropic surface tension ahés the angle which the tangent of

the interface makes with theaxis (appropriate for 2-D). We take+ t” > 0. Furtherg
is the mean curvature (surface energy densi$)is the elasticity energy density which
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is given in Eqg. (60). The constaitis a measure of the relative contribution of the elastic
and surface energies and scales with a characteristic size of the system such as the a
precipitate radius.

The generalized Gibbs—Thomson boundary condition (50) for the composition fielc
analogous to the Laplace—Young boundary condition for the pressure field in the fl
dynamics context. In the solid/solid context, the Gibbs—Thomson boundary condition v
derived by Johnson and Alexander [91], Laz@nd Cahn [106], and Leo and Sekerka [113]
among others (see also [78]). Roughly speaking, this boundary condition reflects the |
that changing the shape of a precipitate changes both the surface energy and the e
energy of the system.

We will also allow a finite mass flux into the system through the far-field condition

. 1
—J_ROIJTOOZE/FOOVC-nds, (51)
where J is the total mass flux into the system afg, is a circular far-field boundary
whose radius iR, andn is the outward pointing normal vector. Jf > 0, the total area
of precipitates increases with time (growth).Jf= 0, then the total area remains fixed
(equilibration or coarsening).

The normal velocityV of each precipitate—matrix interfadg is computed through a
flux balance at the interface,

V =vVc-n|r, (52)

wheren is the normal vector pointing int@™.

We note that an analogy may be made between the diffusion problem hereZ(wit)
and the Hele-Shaw problem described in Section 3. In the Hele-Shaw problem, the pres
p is the harmonic field, and the velocity is proportionalM@ - n through Darcy’s law.
Consequently, the surface tension enters both systems in exactly the same way. There
the difficulties associated with tracking interfaces in a Hele-Shaw cell also arise in t
materials science context.

Finally, it remains to determine the elastic energy dergfityTo calculateg®, the elastic
fields must be computed at each interfeBgeThe elastic fields arise because of misfit strain:
between the precipitate and matrix phases as well as far-field applied strains. Following
notation used in [112], misfitis taken into account through the constitutive relations betwe
the stres€ and the strair€. In each precipitate,

P =cPeEP-¢h (53)
where€T denotes the misfit strain, while in the matrix,
=M= cMeM, (54)
In the remainder of this section, we denote the precipitate and matrix phases by
superscriptsP and M, respectively. Although the precipitates need not have the sar

elastic constants, we will make that assumption here for simplicity. In Egs. (53) and (54;
denotes the orthotropic stiffness tensor, which using compact notation in two dimensic
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is given by

¢y ¢ O
C* = C])fz C§2 0 s (55)
0 0 c&
where x = P, M. For the case of aubic material x, cf; = c,, while for anisotropic

material,c}; = ¢}, andcf; = (c5, — ¢}4)/2. In compact notation, the stress and strain art
given by

& D
EX=| &% and ¥ = | =5, | . (56)
281 21

where&f = %(u{f,— + Ui, uf; = 8u;/dx;, anduf are the displacement fields. The quasi-

steady equations for the elastic fields are
nf;=0 in MP =12 (57)

whereQP = U; Q' and the Einstein summation convention is used. We assume that the tv
phase interfac€; is coherent, and so the boundary conditions are given by the continu
of displacement,

ulp =ulw, on Iy, (58)
and traction,
tlp=%fn=32'nj=tlu. on Ty, I=1 2 (59)
Finally we take conditions

lim EM = £°, and

r—o0

uP < oo in any finite ball around the origin,

whereg? is an applied far-field strain. Once the elasticity problem is solg&ds given by

1 1
ge'zézpz(gp—sT)—EzM EM Mo EM—£P) onTy, (60)

wherea : b = a;;by;;. Last, we note that the diffusion/elasticity system evolves to lower th
sum of the surfac®/; and elastidN, energies:

Vvtot = Ws + Wel (61)

> / SEELAA, (62)
Qx

Wsz/ t(0)ds, and Wg =
Uil x=M,P
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where

gx_ JEP—€T for x =P,
Lev for x = M.

In the presence of non-zero applied stré§f, is infinite and an appropriate finite part
must be taken. We refer the reader to [93] for details. A calculation shows that

. d
VVtot: a (W3+Wel) :/

(tk + 2g”) V ds= —/ IVcl? dA. (63)
r

QM

4.3. Solving the Model

The solution of the diffusional phase transformation system involves three main ste
(i) the solution of the elasticity system (57)—(60) to determiffe (ii) the solution of the
diffusion system (49)—(51) to determiig and (iii) the tracking of the precipitate/matrix
interfaces. In this section, we discuss each of these components separately.

4.3.1. The Diffusion System and Interface Tracking

The solution of the exterior Dirichlet problem is obtained using the very efficient approa
developed by Greenbaushal.(GGM93) [72]. In this approach, a boundary integral formu-
lation of the problem, originally due to Mikhlin [129], is used. L.ebe a dipole distribution
and introducep source termdAy, ..., A,. Then write the composition(x) in the matrix
as

1 d P
= — / I —X(s 1| ds Al - &I- 64
CO0 = o /Un M(S)[an(s/) og |x — X(s)| + } +k§:; «logx — S|.  (64)
wheren(s') is the unit normal at the integration pox(s), s’ is arclength alond’;, and S
is a point insidel'. Lettingx — x(s) € I'j leads to a set of modified 2nd-kind Fredholm
boundary integral equations:

T+ 1K) + 2¢" = 1S + / (s [
UT

> log [x(s) — X(s)| + 1} ds

an(s)

p
+ D AclogIx(s) — Sd. (65)

k=1

To determine thé\y, Eq. (65) is appended with

p
J=> A and Oz/u(s’)ds’, j=1....,p—1. (66)
k=1 y

This system is invertible [129] and the modification to the usual 2nd-kind structure is due
the sourced’,. GGM92 developed an efficient preconditioner by considering the reduc
system of Egs. (65), without the integral operator, and Eq. (64). This reduced fineqr
system may be solved by Gauss elimination. This can be interpreted [93] as a type of
of the integral equations in the spirit of the SSD described earlier in the fluid dynam
context. SSD's for integral equations are discussed in more detail in the following sect
where the inhomogeneous elasticity integral equations are presented.
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The implementation used by GGM93 to solve Egs. (64)—(65) is highly accurate a
efficient. The integrals are discretized with spectral accuracy using the trapezoid rule
the fast multipole method (FMM) [31, 74] is used to evaluate the discrete su@$hh
work. The iterative method GMRES [163] is then used to solve the discrete matrix syste
Thus, the methods of GGM make it possible to solve the exterior diffusion problem for ma
more precipitates than was previously computationally affordable. With this improveme
interface tracking then becomes the limiting computational step in the simulation of pt
diffusional systems.

Using the dipole formulation of GGM93, the normal velocity is given by

X1(S) — X§) X2.s — (X2(S) — X5 ) Xv.s
(xa(8) —x5)° + (xa(S) — x5)°
(67)

1 2 , o
V'(S)—hLFJ“S’as'Og'X(S)‘X(S)' ds+ A

where the integral is interpreted in the principal value sense. A spectrally accurate ¢
cretization of this integral is obtained using the alternate point trapezoidal rule analog
to that given in Eq. (36). Because of the third-order time-step constraint due to the surf
tension (e.g., see Eq. (41)), interface tracking remained a problem for these systems
the recent work of HLS94. Their SSD applies directly to the diffusional system since

V~ SHIE e (68)

atsmall spatial scales[81, 82, 93, 112], since the surface energy dominates the elastic el
at these scales. If one writes+ t” = 1+ (10 + 13), then one can follow the approach
outlined previously for the Hele-Shaw case [81] and rewrite the interface evolution equati
X = Vn + Tsusing the tangent angteand equal arclength tangential velocify Note
that the equations are exactly as in the Hele-Shaw case (Eq. 42) except that the definitic
N now includes the anisotropic surface energy. Except for the anisotropic surface ene
contribution, the remainder ternté are lower order at small spatial scales. Although the
surface energy termi{[(zo + 74)6i aa] « IS Of the same order as the teff(6; o0 ), it Was
found by Almgreret al.[4] and LLNOO that the splitting in Eqg. (42) is effective in removing
the stiffness numerically provided that+ z; is smooth and not too close to 1.

At this point, we can discuss simulations of purely diffusional evolution in the absence
elastic stress4 = 0). In metallic alloy systems, this corresponds to simulating systems |
very small precipitates where the surface energy dominates the elastic energy. The cu
state of the art in solving the pure diffusional evolution problem is the work of Akaiwa ar
Meiron (AM96) [1]. AM96 combined the modified dipole approach of GGM93 togethe
with the non-stiff time stepping of HLS94 to study the coarsening behavior of large prec
itate/matrix systems with isotropic surface tensien=£ 0). AM96 performed simulations
containing over 5000 precipitates initially. Precipitates are removed if their area decree
below a certain tolerance. We note that the effect of removing precipitates was analy
in [93] (elasticity was also considered). To make such large computations feasible, AV
also took into account the effectively finite interaction distance of the diffusion field. F
instance, particle—particle diffusional interactions may be neglected with only small relat
errors if the particles are well enough separated [1]. To take advantage of this fact, AN
divided the computational unit cell into sub-cells each containing 50-150 precipitates.
side each sub-cell, the full diffusion field is computed. The influence of particles outsi
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FIG. 24. The late stages of diffusional coarsening with no elasticty< 0). Left: moderate time; Right: late
time. Graph courtesy of Akaiwa and Meiron [1]. Reproduced with permission from N. Akaiwa and D. |. Meiro
Phys. Rev. B4, 1996, R13. Copyright (1996) by the American Physical Society.

each sub-cell is restricted to only involve those lying within a distance of 6—7 times t
average precipitate raditR from the sub-cell. This was found to give at most a 1% erro
in the diffusion field [1] and significantly reduces the computational cost.

The simulations of AM96 are impressive. For the diffusion systems they considered,
FMM is over 2,500 times faster than using direct summation [72] and the original meth
of MVBM92. Since these integral equations must be solved at each time step, this is
enormous savings. Further, an additional factor of at least 1000 in speedup is gaine
using the time stepping of HLS94 over that of a standard explicit method.

In Fig. 24, two snapshots of a typical simulation are shown at the very late stages
coarsening. In this simulation, the precipitate area fraction3sa@d periodic boundary
conditions are applied to the unit cell. In Fig. 24a, there are approximately 130 precipite
remaining, while in Fig. 24b there are only approximately 70 precipitates left. Note tf
there is no discernible alignment of precipitates. Further, as the system coarsens, the ty
shape of a precipitate shows significant deviation from a circle.

By using such large systems, AM96 were able to analyze the statistics. Their simulati
agree with the classical Lifshitz—Slyozov—Wagner (LSW) theory [117, 205] in which tt
average precipitate radiyR) is predicted to scale dR) ~ t1/3 at large times. As seen in
Fig. 24, AM96 find the persistence of non-circular precipitate shapes. Interestingly, althot
the particles are not circular, certain statistics, such as the particle size distribution functit
are found to be insensitive to the non-circular particle shapes at even at moderate vol
fractions [1]. At volume fractions greater tharb0the simulations become more difficult as
the resulting small inter-particle spacings necessitate the use of adaptive refinementin s
to accurately discretize the dipole and velocity integrals as well as adaptive refinemer
time to accurately track the interfaces. This remains to be done in the future.

4.3.2. The Homogeneous Elasticity System

In homogeneous elastic media, the derivatives of the displacement field due to a misfit
precipitate may be evaluated directly from the Green’s function tensor via the bound
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integral
uj k() = (Cij11 + € Cij22) / gij.k(X, X)n| ds, (69)
r
wherex is either in the matrix or in the precipitate and

Cijki = 2Cs68ik5jI + C128ij ki — (C11 — C12 — 2C66)dijki »

for cubic systems; here we do not use compact notation. The misfit t€hgerassumed

to take the form
r_ (1 0
£ _(0 o). (70)

wheree, is a constant. In two space dimensions, one may find an effectively analy
form for g;; k that depends on the anisotropy rafo= 2Cse/(C11 — C12). Taking the limit

asx — X(s) € I, the result involves a rather complicated principal value integral whos
exact form we do not present here; we instead refer the reader to [182, 183, 188, 204].
note thay® is easily constructed oneg x has been obtained (also see [204] for example)

The current state of the artin simulating diffusional evolution in homogeneous, anisotro
elastic media is the recent work of Thorntenal. (TAV99) [189-191] in which the coars-
ening of large cubic systems is studied. In metallic alloys, such a system can be consid
as a model for nickel-aluminum alloys, since in those alloys the precipitates and ma
both have face-centered-cubic lattices with elastic constants typically differing by less tt
10% [122]. TAV99 combined the improvements in interface tracking due to HLS94 ai
in the diffusion solver due to AM96 and GGM93. In addition, TAV99 developed a fas
multipole method to evaluate the elasticity integral in Eq. (69). With these improvemen
TAV99 achieved an enormous gain in computational efficiency and are now able to anal
the statistics of microstructure evolution in homogeneous elastic media.

In preliminary work, TAV99 have performed simulations involving over 4000 precipitate
initially. As in AM96, precipitates are removed when their area reaches a certain lov
tolerance. See Fig. 25 for results with= 2.0, 41 and 61 and with isotropic surface
tension and dilatational misfits. The value Bfis allowed to vary dynamically through
an average precipitate radius. Thus, as precipitates coarsen and growZaigeneases
correspondingly. The initial volume fraction of precipitates.ls@nd simulations are started
with Z = 1. TAV99 find that the morphological evolution is significantly different in the
presence of elastic stress. Unlike the purely diffusional case and consistent with experime
results, large-scale alignment of particles is seen in10€ and(010 directions during
the evolution process. In addition, there is significant shape dependence as nearly cir
precipitates are seen at smadll= 2.0, while atZ = 4.1 andZ = 6.1, precipitates are
squarish and rectangular, respectively. As in AM96, certain features of the process
insensitive to the shape variation and work is continuing to determine the asymptotic r
of increase of R) in time.

4.3.3. The Inhomogeneous Elasticity System

While the elastic constants of the nickel-aluminum precipitates and a nickel matrix m
differ by only 10%, there are other nickel-based alloys in which the elastic constants n
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FIG. 25. Coarsening in homogeneous, cubic elasticity. Upper graph: early #me 2.0); Middle graph:
moderate timeZ = 4.1); lower graph: late timeZ = 6.1). Graph courtesy of Thornton, Akaiwa, and Voorhees
[190].

differ by more than 50%. Examples of such systems include nickel-silicon and nick
gallium precipitates in a nickel matrix. It therefore is important to be able to account f
elastic inhomogeneity. Indeed, the results of many investigations now indicate that e
small elastic inhomogeneities may significantly impact precipitate evolution (e.g., [93, 1.
114, 115, 140, 162, 168, 169]).

The inhomogeneous elasticity system (57)—(60) is much more difficult to solve th
the homogeneous system. Unlike the homogeneous case, integral equations must nc
solved in order to obtain the inhomogeneous elastic fields. The elasticity system (57)—
may be reformulated in terms of boundary integrals as followsul@) andt;(s) be the
components of displacement and traction on the boundary, respectively. One may ther
a direct approach, involving both elastic monopoles and dipoles, to obtain a system of 1
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coupled integral equations for the displacement and traction components on each iliterfa

“éQ+ﬁw@ﬁ&ﬂaﬂwmé—£mﬁwﬁﬂﬂﬂﬂmg
=tAtJ@6U£(ﬂ9,d§Dd§, (1)
_“g$+[ﬁu®ﬁﬂm$m@wd§—ﬁmﬁﬂﬁaﬁlﬂﬂmg
_ UIAO;(S)) /Fuf(s/)Tk',-V'(x(S),X(S’))dS’—/rtf\(s')ukﬁ(x(s)’X(s/))dg’ (72)

wherel’ = U; T} andU P (x, x), UM (x, x) are the fundamental solution tensors in the pre-
cipitate and matrix domains (considered separately) that generate displacement ve
u;j(x) arising from an isolated point source locatedain the precipitate and the matrix
respectively. In Eq. (72)F P andTM are the analogous traction tensor fields. We do not giv
the exact form ofJ* andT* here; instead we refer the reader to JLL97 for the isotropi
case and LLNOO for the orthotropic case (see also [153, 154, 168, 169])J Tleentains
both smooth and logarithmic functions while tfié contains both smooth functions and
functions with Cauchy-type singularities; the integrals are interpreted in the principal
value sense. Finally, in Egs. (71) and (72),s the traction vector due to the misfit strain
in the precipitatd™ = CET andu” andt” are the displacement and traction vectors of
constant applied stress fiekt*.

The small scale decomposition for integral equationslthough the system (71), (72)
is a Fredholm equation of mixed type with smooth, logarithmic, and Cauchy-type kerne
it was shown by JLL97, in the isotropic case, and by LLNOO, in the anisotropic case, tha
may be transformed directly to a second kind Fredholm system with smooth kernels. -
transformation relies on an analysis of the equations at small spatial scales and is in s
like the SSD in the fluid dynamic context. Classical Fredholm theory [152] may be us
to guarantee the existence and uniqueness of solutions since the displacement is uni
specified at infinity ¢*).

If Egs. (71) and (72) are discretized directly, the condition numbers increase at le
linearly with N (the total number of points) due to the logarithmic kernels. The conditio
number also increases slowly as the number of precipitaiasreases. To overcome this
ill-conditioning, JLL97 and LLNOO performed a small scale analysis of the equations
determine the dominant terms at small scales in the spirit of HLS94. For example, supg
a system of integral equations may be written as

Alu,t] =f (73)

and suppose thad ~ £ at high wave-numbers, while the remainder involves integratiol
against smooth kernels. Then one may write

A=L+R. (74)

If £ is diagonalizable in Fourier space, and so is easily inverted using the FFT, one r
rewrite Eq. (73) as

(I + L7R)[u, t] = £714, (75)
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which is a second-kind Fredholm equation. When discretized, Eq. (75) is well conditior
[93]. See [219], for example, for an application to a first-kind Fredholm equation for tt
Dirichlet problem.

Application to the inhomogeneous elasticity integral equatioms.the elasticity case,
the SSD reveals that the dominant operator at small scales is

L=(L111, . - Lr1p L121,...,L12p, L21, L£22), (76)

where the components df are then given by
L . _ } _ P _ P Ind
wjlutl = Su DuxH[uk] — Dz H[tx], (77)
1 -
Lailu,t] = Zur — Dy Hlud — D HIEd. (78)

and d,fk = Lt/27 and Df*z'\" depend only on the elastic constants (see [93, 112] fc
details). Note that thei, andfy that appear on the right hand sides of Egs. (77) an
(78) are only evaluated of;. In contrast,A involves evaluation oty andt, on all the
precipitate/matrix interfaces; I';. Although £ is a nonlocal operator, solving

Llu,t] =b

only involves inverting a 4« 4 matrix in Fourier space singgis diagonalized by the Fourier
transform. This isnuchsimpler than solving the full system. Further, if the precipitate/matri;
boundaries are smooth, then the remainder opeRiarolves integration against smooth
kernels and thus is a smoothing operator. Roughly speaking, this means that as an ope
R has a rapidly decaying Fourier symbol [93]. This type of small scale decompositi
for integral equations obviates the need to use Goursat functions to formulate second-
equations directly for the elasticity system [73, 129]. Typically, this SSD preconditionir
reduces the iteration count by about a factor of about 5 over that for the unpreconditio
system [93, 112]. What remains of the original ill-conditioning is tBat ~ |k| for large
wave-numberk. Thus, numerical errors ifi are amplified by the application af .
Numerical filtering [81, 104] is used to control this amplification.

We remark that Greengard and Helsing (GH98) [73] have recently developed a |
algorithm for computing elastic fields in isotropic, inhomogeneous elastic media. Th
algorithm is based on an indirect integral equation approach using complex potenti
due to Sherman [177], combined with the fast multipole method and adaptive Gau
Legendre quadrature. In this approach, a single second kind Fredholm equation for ¢
interface is obtained directly for a Cauchy layer potential. This alone presents an enorrr
savings over the direct approach discussed where four equations must be solved for
interface. However, the methods of GH98 currently only account for applied fields a
not for precipitate misfit strains. Nevertheless, this approach is very promising for use
microstructure evolution and Helsing and Lowengrub are studying its extension to the c
of misfitting precipitates.

4.3.4. Interface Tracking in the Face of Anisotropy

LLNOO observed that certain microscopic details of the numerical solution, such
cr, may depend sensitively on the numerical time-integration algorithms. This sensit
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dependence arises when large gradients are present. Such gradients are typically asso
with the formation of “corners” or regions of high curvature. Since corners naturally arise
equilibrium precipitate shapes in the presence of anisotropy, care must be taken to com
the solutions accurately. Time stepping methods based on an integrating factor approac
in Eq. (47) tend to overdamp the numerical solution. This may cause oscillations to occu
cr and prevent attainindvi,; = 0 (computed from Eq. (63)) as equilibrium is approached
Macroscopic properties such as particle shapes and curvatures are less sensitive t
algorithms.

LLNOO developed accurate time discretizations by requiring that certain properties
the continuous equations be maintained on the discrete level. For example, in equilibri
there is an exact balance between the linear and nonlinear terms in Fourier space,

m(k) N* _N*
L3000 = N0, (79)

wherex denotes the equilibrium value (recall Eq. (42)) angk) = (27 |k|)®. It is straight-
forward to see that the integrating factor method in Eq. (47) violates this condition. T
amount by which condition (79) is violated will be small if eittteris exponentially small

or mAt is small. If large gradients are presefit, may be exponentially small only for
rather large wave-numbeksand hence very largm. For example, suppose exponential
decay is observed fak| > k*, then the error is small only in(k*)At <« 1. This is an
accuracyrestriction. If this is violated, then the error term may be significant even thou
the integrating factor method is formally second order accurate in time. Typicalgnd
Wt are sensitive to this error while interface position and curvature are not.

If k* is large, then the accuracy conditiomk*)At <« 1 may be very restrictive. By
reducing the degree of damping at high wave-numbers, the accuracy restriction may
removed completely while the overall order of accuracy is maintained. Reducing the amc
of damping does narrow the stability region of the numerical scheme, however. LLN
considered three numerical schemes for which Eq. (79) is satisfied exactly on the numel
level. The scheme that is found to perform the best is given by

an+1 1 sn—1 Nn
= 1+ m(| n+1_ | n—l)em(lf‘—lﬂfl) o + 24t m(| n+1 _ | n—l) + e—m(lf‘—lﬂ*l) .

(80)

In this scheme, the linear term is damped exponentially, while the nonlinear term is dam
only algebraically.

4.3.5. Results on Microstructure Evolution in Inhomogeneous, Isotropic Elastic Media

The current state of the art in simulating microstructure evolution in inhomogeneot
isotropic elastic media is the work of JLL97. In their approach, the interface tracking
HLS94 is combined together with the diffusion solver of GGM93 and with the elasticil
solver described above. The method of JLL97 is spectrally accurate, although a 25th-o
accurate Fourier filter is used to control numerical aliasing error (e.g., see HLS94).

JLL97 investigated both growth and coarsening of systems of precipitates with isotro
surface tension. In the case of a shear misfit tensor g+ —&J,, £, = 0), which
introduces cubic anisotropy, growing shapes of single precipitates are seen to be denc
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FIG. 26. A series of different precipitate shapes under growth conditions in isotropic, inhomogeneous ela
media with shear misfit. In (a)—(c), the fluxds= 10. In (a), the shear modulus of the precipitate is twice that of
the matrix. In (b), the opposite case is shown. In (c), there is no elastiEity Q). In (d), the nonconvex shape is
from (a) at timet = 20, whereas the convex shape is the corresponding equilibrium shape. Graph courtesy of
etal.[93].

while equilibrium shapes are squarish. See Fig. 26 for a sample of results. In (a) and (b)
numerical flux isJ = 10. In (a), the shear modulus of the precipitate is half of that o
the matrix (soft precipitate) while the opposite is true in (b) (hard precipitate). Note tt
the dendrite arms are more slender for the soft precipitate than for the hard precipit
In addition, wiggles form on the dendrite arms of the soft precipitate, which indicat
additional instability in the soft case relative to the hard. We also note that the obser
dendritic structure in both cases qualitatively resembles that obtained using no elast
(Z = 0), but anisotropic surface tension [4] (see Fig. 14). In Fig. 26e, the correspond
case with isotropic surface tension add= 0 is shown. Note the isotropic nature of the
curve, as well as the occurrence of tip splitting, is suppressed by the elasticity. In Fig. 2
the convex curve corresponds to the equilibrium precipitate shape obtained by 3ettifg
att = 20 for the soft precipitate (the non-convex shape shown in the figure).

InFig. 27, a sample simulation is shown of 16 precipitates coarsediag() ininhomo-
geneous, isotropic elastic media. Precipitates are removed when their area drops belov
Because of the isotropic surface tension and choice of misfit (tetragonalfyigh £J, > 0,

&], = 0), the precipitates develop roughly elliptical shapes. An overall classical coarsen
behavior occurs as large precipitates grow at the expense of small ones. Further, over the
scales shown, there is no significant precipitate translation or alignment. Thus, it app
that alignment is a secondary process that occurs after shape changes and coarsenin

When precipitates are removed, the surface and elastic energies are continuous bt
surface energy is kinked. In fact, it may be shown &g ~ (t. — t)=%/3 [93]. This may
be seen explicitly in Fig. 28, wheMY andW are shown for the simulation in Fig. 27. As
expected\V; drops sharply just before a precipitate is removed. Because precipitates
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FIG. 27. The coarsening of 16 precipitates in an isotropic, inhomogeneous elastic media. Graph courtes
Jouet al.[93].

removed after their area drops belovt &their size when they are actually removed varies
Thus, the drops i vary. Interestingly, thenvelopeof W, appears to be a continuous
curve which suggests that the overall evolution is insensitive to precipitate removal.

4.3.6. Results on Microstructure Evolution in Inhomogeneous, Anisotropic Elastic Medi

The current state-of-the-art in simulating microstructure evolution in inhomogeneot
orthotropic elastic media is the work of LLNOO. In their method, LLNOO coupled th
diffusion solver developed by GGM93 together with a solution of the orthotropic Rizzc
Shippy elasticintegral equations with small scale preconditioning. Because no fast algori
yet exists for evaluating the elasticity integral equations, an efficient parallel implementat
of direct summation was used for both the diffusion and elastic systems.

LLNOO found that even small elastic inhomogeneities may have a strong effect on p
cipitate evolution. For instance, in systems where the elastic constants of the precipit
are smaller than those of the matrix, the precipitates move toward each other; The rat
approach depends on the amount of inhomogeneity. Anisotropic surface energy may e
enhance or reduce this effect.
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FIG. 28. The behavior of the energyv and\W for the coarsening simulation shown in Fig. 27. The filled
circles correspond to the times at which precipitates are removed. Graph courtesyeball§@3].

To illustrate this effect, consider the evolution of four types of precipitates in a nick
matrix: (i) homogeneous (Ni), (ii) nickel-silicon (p&i), (iii) nickel-aluminum (N3Al),
and (iv) nickel-gallium (NiGa). The N§Si precipitates have larger elastic constants (harc
than the Ni matrix, while both the A and Ni;Ga precipitates have smaller constants
(soft) than the matrix. Moreover, both the precipitates and matrix are cubic anisotropic w
anisotropy raticA > 1. See LLNOO for details.

In Fig. 29, the evolution of two precipitates is shown for each of the systems (i)—(i\
The initial configuration in all cases consists of two unit circles separated by a distanc
1 unit. Z = 5 for all cases. For the homogeneous case and the case wih p¥irticles,
the final times correspond to when particle evolution essentially ceased. For the cases
NizAl and NisGa particles, the final times correspond to when the interparticle spacing v
too small to resolve the interfaces for the numerical parameters used.

We observe that the spacing between the hag®Njarticles is larger than the spacing
between the homogeneous particles, while the spacing between the gdfaNi Ni;Ga
particles is smaller than the spacing between the homogeneous particles. This is consi
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FIG. 29. The behavior of two precipitates in inhomogeneous, cubic anisotropic elasticity. Graph courtesy
Leoetal.[112].

with simulations inisotropic mediawhere that hard particles repel, while soft particles attr
[93]. However, the situation is more complex with anisotropic elasticity. In the homogenec
and the NiSi case, the particles move towards each other with very small velocities whi
tend to zero at a finite interparticle distance. In the®4 case, the interparticle attraction
increases as the interparticle spacing decreases. This suggests the particles will merg
the NiAI case (which is nearly homogeneous), however, the interparticle attraction beg
to decrease when the particles are very close to one another. More refined calculation
necessary to determine whether there is in fact a small non-zero interparticle spacin
this case. The difference between thg®k and N3Al cases is also reflected in the particle
shapes in the interparticle region; in the;8a case, the particles appear to curve towar
each other, while in the MAI case, the two particles have “squared off” against each othe
Finally, we conclude this section by presenting some recent preliminary results, obtail
by LLNOO [111], which indicate that an elastically driven morphological instability may
occur in the presence of applied fields. Inhomogeneity plays a crucial role in the instabi
as an analogous instability has not yet been observed in homogeneous systems [
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FIG. 30. The elastic morphological instability of a misfiting sindi&Si precipitate in an applied shear. In
(@),Z =5.1In (b),Z = 3. In (c), a homogeneous precipitate is shown for comparison #ith5 andZ = 10.
Graph courtesy of Leet al.[111].

Moreover, the instability apparently leads to precipitate splitting. This may be the source
splitting observed in experiments [94, 217] for example. A similar morphological instabili
has been observed in simulations using the discrete atom method [108, 109].

The elastic morphological instability may be seen in the following context. Consider t
evolution of a single NiSi precipitate with applied shear and dilatational misfit. This i
shown in Fig. 30a witlZ = 5 and isotropic surface tension. In this simulation, the initia
conditionis acircle. The interface is then shown at subsequent times near pinch-off. Obs
that the interface forms two interpenetrating fingers that grow toward one another, stror
suggesting that the precipitate will splitinto two platelike precipitates with long axes orient
in thexo-direction. There is a very slight amount of asymmetry in the plot due to numeric
error and more refined simulations are currently being performed; convergence tes
earlier times confirm that the instability is physical and not numerical. For the purposes
comparison, Fig. 30b shows the evolution of the precipitate @ith 3. In this simulation,
there is a hint of instability at small times although the precipitate boundary stabiliz
and becomes elliptical. In Fig. 30c, the evolution of a homogeneous precipitate is shc
with Z = 5 (solid squarish line) and = 10 (dashed line). In the homogeneous case, th
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precipitate converges to a squarish equilibrium shape which is remarkably different fri
that seen in the inhomogeneous cases.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented a brief review of the application of boundary integ
methods in two dimensions to multicomponent fluid flows and multiphase problems
materials science. In particular, we have focused on results from the recent developme
methods which accurately and efficiently include surface tension. In fluid flows, we he
examined the effects of surface tension on the Kelvin—Helmholtz and Rayleigh—Tay
instabilities, the generation of capillary waves on a free surface, and problems involv
pattern generation and selection and singularity formation in Hele-Shaw flows. In ma
rials science, we discussed microstructure evolution in diffusional phase transformati
and the effects of the resulting competition between surface and elastic energies on
microstructure morphology.

The significant recent developments underlying these simulational studies are (i)
analyses of BHL93/BHL96 and BN98 which identify and correct instabilities generated |
spatial discretization, and most especially (ii) the introduction of the SSD by HLS94/HLS
to develop very efficientand accurate time discretization methods. Until these works, simi
tions were fraught with numerical instability and were greatly limited in accuracy and tempg
ral evolution. The above works have provided the backbone of new classes of methods w
have enabled the study of much more complex phenomena than was previously possil

Many challenges remain for the future. These include the extension of the ideas prese
here to more complicated flows such as those involving viscosity and/or elastic bound
forces (e.g., from simulations of heart function), as well as to axisymmetric and 3-D int
face evolution. In axisymmetric flows, the SSD has recently been extended to the vol
sheet case by Nie [135], and to axisymmetric porous media flow by Ceniceros and Si [
The development of accurate and efficient boundary integral methods for interface evolu
in 3-D is a highly non-trivial problem and has been the subject of much recent research (;
for example [20, 76, 83, 84]). The development of efficient and accurate time-stepping al
rithms in 3-D, analogous to those in 2-D based on the SSD, is an outstanding problem. Ir
materials science context, where the time-step restrictions are third-order, the developr
of efficient time integration methods is crucial. Although there have been three dimensio
boundary integral simulations recently performed by Thompson and Voorhees [187]
homogeneous systems and by Mueller and Gross [133] for inhomogeneous systems, 1
works were limited by spatial and temporal resolution requirements.
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